首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of insulin binding and kinase activity of soluble, partially purified insulin receptors from human skeletal muscle are considered. An equilibrium for insulin binding was obtained within 2 h at 37 degrees C. At lower temperatures the equilibrium for insulin binding was less clearly defined. Dissociation of 125I-labelled insulin was incomplete unless an excess amount of unlabelled insulin was added. Insulin-stimulatable autophosphorylation of the 95 kDa subunit was verified by gel electrophoresis. The kinase activity was measured with the synthetic polypeptide poly(Glu-Tyr(4:1] as a phosphoacceptor. The insulin receptor kinase activity correlated significantly (r = 0.92, P less than 0.0001) to the concentration of high-affinity insulin binding sites in the eluate. Autophosphorylation of the insulin receptor was necessary for the activation of the receptor kinase. When activated the receptor kinase activity was stable for at least 60 min at 21 degrees C with a pH optimum of approx. 7.8, similar to the pH optimum for insulin binding. The non-ionic detergent Triton X-100 inhibited the sensitivity of the receptor kinase to insulin. Insulin stimulated the Vmax of the kinase reaction about 3-fold, decreased the Km for ATP from 35 +/- 5 microM (mean +/- S.E.) to 8 +/- 1 microM (P less than 0.02) and induced a positive cooperativity to ATP with an increase in the Hill coefficient from 1.00 +/- 0.02 to 1.37 +/- 0.07 (P less than 0.05). According to the Hill plots, insulin itself showed no cooperativity with respect to receptor binding or kinase activation.  相似文献   

2.
Insulin receptors could be demonstrated in cultured smooth muscle cells of rat aorta. The specific binding of 125I-insulin was time-, temperature- and pH-dependent. The optimal temperature for our studies was 12 degrees C. At this temperature maximal specific binding was 0.5% of total counts at 120 min incubation. The pH-optimum for the binding process was between 7.5 and 8. Degradation of 125I-insulin at 12 degrees C was 14%, no degradation of binding sites could be measured at this temperature. Dissociation of 125I-insulin was rapid. 50% of the labeled hormone remained associated with the cells. Half-maximal inhibition of 125I-insulin binding was produced by insulin at 4 X 10(-11) mol/l. Scatchard-analysis gave curvilinear plots, that may suggest negative cooperativity. Specificity of binding was studied in competition experiments between 125I-insulin, insulin, proinsulin, insulin-like growth factors and human growth hormone. Half-maximal inhibition of 125I-insulin binding was produced by proinsulin at 2 X 10(-9) mol/l and by insulin-like growth factors at 9 X 10(-9) mol/l. Human growth hormone had no significant effect on the insulin binding.  相似文献   

3.
Insulin binding and insulin receptor tyrosine kinase activity were examined in two rodent models with genetic insulin resistance using partially-purified skeletal muscle membrane preparations. Insulin binding activity was decreased about 50% in both 12-week (219 +/- 184 vs 1255 +/- 158 fmoles/mg, p less than 0.01) and 24-week old (2120 +/- 60 vs 1081 +/- 60 fmoles/mg, p less than 0.01) ob/ob mice. In contrast, insulin binding to membrane derived from 24-week old db/db mice was not significantly different from lean controls (1371 +/- 212 vs 1253 +/- 247 fmoles/mg). Insulin-associated tyrosine kinase activity of membranes from ob/ob skeletal muscle was decreased, compared to its normal lean littermate, when compared on a per mg of protein basis in both 12-week (37 +/- 3 vs 21 +/- 3 pmoles/min/mg, p less than 0.05) and 24-week old (71 +/- 5 vs 37 +/- 6 pmoles/min/mg, p less than 0.01) mice. However, no significant differences in kinase activities were observed when the data were normalized and compared on a per fmole of insulin-binding activity basis for the 12-week (12 +/- 1 vs 11 +/- 2) and 24-week (27 +/- 2 vs 20 +/- 3) age groups. Insulin receptor tyrosine kinase activity of db/db skeletal muscle membranes was not different than its normal lean littermate whether expressed on a protein (34 +/- 7 vs 30 +/- 3) or fmole of insulin-binding activity (21 +/- 4 vs 18 +/- 4) basis. These data suggest that insulin receptor tyrosine kinase is not associated with the insulin resistance observed in ob/ob and db/db mice and demonstrate differences in receptor regulation between both animal models.  相似文献   

4.
Basal heart triacylglycerol (TG) (mumole triacylglycerol/g of dry weight) (- before "in vitro" Langendorff perfusion -) was significantly higher in animals rendered chronically hypertriglyceridaemic (H) by a 63% sucrose-rich diet than in controls (C, standard diet); 28 +/- 2.6 means + SEM vs. 19.3 +/- 1.2; respectively (p less than 0.01). After 40' perfusion with Krebs-Henseleit buffer + 5.5 mM glucose, 2.5 mM Ca++, TG content fell to 14.2 +/- 0.6 in C and 14.9 +/- 1.9 in H (n.S.). Administration of 1 n mol x min-1 of glucagon (Gn) from min 20 to 40 reduced TG to 9.0 +/- 0.5 in C (p less than 0.05). In contrast no effect of Gn was observed in H (TG at min 40: 16.7 +/- 2.5). Glycogen (Gly) content (mumol/g of dry weight) after Gn perfusion fell from 30 +/- 1.9 to 17 +/- 2.1 (p less than 0.01) in C, while again no effect was recorded in H. "In vivo" plasma glucose fractional coefficient disappearance rate was lower (p less than 0.001) in H: 1.01 x 10(-2) +/- 0.09 x 10(-2) vs 2.61 x 10(-2) +/- 0.14 x 10(-2) in C, in spite of H showing hyperinsulin secretion. Hyperinsulinism was further documented by "in vitro" Iri release studies from incubated pancreas pieces. In the absence of glucose (G) from the incubation medium H produced 541 +/- 19.8 mU/mg weight Tissue/20', while C produced 91.2 +/- 12.7 (p less than 0.001). With 100 mg% G, H released 1058 +/- 259 and C 377 +/- 82.5 (p less than 0.001). It is suggested that hyperinsulin secretion plus insulin resistance may account for the above findings.  相似文献   

5.
The mechanisms by which insulin deficiency affects muscle glucose transport were investigated. Epitrochlearis muscles from rats with streptozotocin-induced diabetes and from controls were incubated in vitro for 0.5-14 h. The incubation was shown not to impair muscle energy stores or tissue oxygenation. Diabetes decreased basal 3-O-methylglucose transport by 40% (p less than 0.01), and insulin-stimulated (20 milli-units/ml) glucose transport capacity by 70% (p less than 0.001). In vitro incubation gradually normalized insulin responsiveness (3.77 +/- 0.38 before versus 8.97 +/- 0.65 mumol X ml-1 X h-1 after 12 h of incubation). Basal glucose transport remained significantly reduced. The reversal of the insulin responsiveness did not require the presence of rat serum and, furthermore, took place even in the absence of insulin. In fact, insulin responsiveness was higher after incubation (14 h) with no insulin than with 100 microunits/ml insulin (9.85 +/- 0.59 versus 8.06 +/- 0.59 mumol X ml-1 X h-1, p less than 0.05). Glucose at 30 mM did not affect the normalization of the insulin-stimulated glucose transport capacity, whereas incubation in serum from diabetic rats resulted in a slightly (26%) blunted reversal (7.60 +/- 0.39 versus 8.89 +/- 0.45 mumol X ml-1 X h-1 with diabetic versus control serum for 14 h, p less than 0.05; before incubation the value was 3.87 +/- 0.40). Inhibition of protein synthesis by cycloheximide blocked the normalization by 80%. These results suggest the presence in diabetic serum of some labile factor that might inhibit the glucose transport system. The results indicate that the decreased insulin-stimulated glucose transport capacity, in the insulin-deficient diabetic muscle, is not a direct consequence of the lack of insulin or of high glucose concentrations.  相似文献   

6.
Insulin binding was studied in rabbit semimembranosus proprius and psoas major muscles composed of slow-twitch oxidative (SO) and fast-twitch glycolytic (FG) fibers, respectively. For this purpose, we developed a technique using cryostat microtome muscle slices. Degradation of 125(I)-insulin during the incubation period was prevented by the addition of 1 mM bacitracin in the buffer. Specific binding to muscle slices plateaued by the 24 hrs. of incubation at 4 degrees C. It increased as a function of the amount of muscle, with a maximum binding occurring at about 5 mg of muscle slices. Triton X-100 has been shown to increase specific binding from a critical concentration of 10(-4) M with a maximum effect occurring at 3.3 10(-4) M. Under this condition, the binding was specific since displacement studies showed no inhibition of 125(I)-insulin binding by GH, HCG, ACTH and glucagon, whereas half maximal inhibition was achieved using 5 10(-10) M insulin, 3 10(-9) M IGF1 and 2 10(-8) M proinsulin. The analysis of the binding data yielded curvilinear Scatchard plots. The number of high affinity insulin receptors was higher in the SO muscle than in the FG muscle (4.3 +/- 0.7 vs 0.7 +/- 0.2 fmol/mg fresh muscle; P less than 0.001) with similar high affinity dissociation constants (Kd = 1.5 10(-10) M). Analogous results were obtained using muscle microsomal fractions. The differences in insulin binding might be related to the more intense metabolism of SO fibres which contract more often than FG fibres in vivo.  相似文献   

7.
The present studies were directed to examine and quantify binding and degradation of radiolabelled cholecystokinin (CCK) peptides by isolated rat liver cells. After incubation with liver cells (4.5 x 10(6) cells/ml) at 14 degrees C, minimal binding (less than 5%) of labelled CCK33 was detected. When labelled nonsulfated (nsCCK8) and sulfated CCK8 (sCCK8) were incubated, 16.2 +/- 1.8% (mean +/- S.E.) and 7.2 +/- 0.1% of 125I-nsCCK8 and 125I-sCCK8, respectively, were bound to the cell fraction. However, no inhibition of binding of either labelled nsCCK8 or sCCK8 was observed when incubated in the presence of excess unlabelled peptide (10 ng-10 micrograms). Preferential binding of labelled sCCK8, the biologically active form of the octapeptide, appeared to be to the nonparenchymal liver cell, rather than the hepatocyte, fraction; when corrected for cell size and protein content, binding of sCCK8 was approximately 15-times greater by the nonparenchymal cell population. When incubated with hepatocytes at 37 degrees C for 60 min, no degradation of labelled sCCK8 was detected by high pressure liquid chromatography. In contrast, progressive degradation of sCCK8 was observed when the peptide was incubated with the nonparenchymal cells. The results of these studies confirm previous observations that CCK33 is not bound by the liver. They further demonstrate that to some degree CCK8 is preferentially bound and degraded by hepatic nonparenchymal cells; however, this binding appears to be noncompetitive and, therefore, probably not receptor-mediated.  相似文献   

8.
B C Nisula  J F Dunn 《Steroids》1979,34(7):771-791
This report describes a solid phase method for the characterization of testosterone binding to both albumin and testosterone-estradiol binding globulin (TeBG). TeBG is adsorbed from serum samples onto a solid phase matrix of concanavalin A covalently linked to 4B Sepharose. The binding of testosterone is then examined both in the presence and absence of the endogenous serum albumin. Analysis of the resulting Scatchard plots permits determination of the TeBG binding capacity, TeBG association constant and a parameter of albumin binding equivalent to the product of its affinity and capacity for binding testosterone. Results showed that the TeBG capacity was lower in men than in women (18.4 +/- 5.8 vs. 33.1 +/- 19.2 nM, p less than 0.01). The association constant was greater in men (1.59 +/- 0.35 vs. 1.19 +/- 0.32 x 10(9)M-1, 10(9)M-1, p less than 0.01). There was no difference in the albumin binding parameter (43.8 +/- 18.3 vs. 46.6 +/- 15.5, NS). These parameters can then be used to calculate the distribution of the circulating testosterone into albumin bound, TeBG bound and unbound fractions.  相似文献   

9.
Saturation analysis of equilibrium binding of iodinated thyrotropin (125I-TSH) to normal human thyroid preparations yielded linear Scatchard plots under non-physiological conditions of pH 6.0 or 20 mM Tris/acetate buffer, pH 7.4. The apparent equilibrium dissociation constant of this binding was approximately 10(-8) M. By contrast, nonlinear plots were obtained under standard conditions of pH 7.4 and 40 mM Tris/acetate buffer. Resolution of the components of these curves by computer analysis revealed the presence of at least two classes of binding sites, one of which is of a low capacity and high affinity (approximately 10(-10) M) consistent with receptor binding. The other component is of a high capacity and lower affinity. Binding to non-target tissues of muscle, parathyroid, mammary carcinoma, and placenta was only demonstrable at pH 6.0 or in 20 mM Tris/acetate buffer, pH 7.4, yielding linear Scatchard plots with similar binding affinity (approximately 10(-8)M) to normal thyroid but much reduced capacity. Preincubation of thyroid tissue at 50 degrees C resulted in an apparent selective loss of the high affinity component of binding measured under standard conditions. Kinetic experiments on the dissociation of bound 125I-TSH were undertaken to determine whether the non-linearity of Scatchard plots was due to two or more classes of binding sites or negative cooperativity. It was found that the experimental determinant that is presently ascribed to a negative cooperativity phenomenon regulating receptor affinity (i.e. an enhanced dilution-induced dissociation rate in the presence of excess native hormone), although apparently hormone-specific, was demonstrated under nonphysiological binding conditions and in non-target tissue. Significantly, the phenomenon was found under conditions of pH 6.0 or 20 mM Tris where a linear Scatchard plot was obtained. The evidence thus suggests that 125I-TSH binds to heterogeneous binding sites (of which the high affinity is probably the receptor for TSH) and that the enhanced dilution-induced dissociation of bound hormone by native hormone for this system, is only a characteristic of the low affinity binding site (maybe gangliosides).  相似文献   

10.
To elucidate the mechanism by which hydroxychloroquine (HCQ) affects glucose metabolism, the effect of this drug and its enantiomers on insulin metabolism was studied using the cytosolic fraction of liver homogenates from healthy and diabetic rats. Eadie-Hofstee plots were monophasic suggesting that only a one-component enzyme system is involved in insulin degradation in the fraction used. Reaction velocity (V) vs substrate concentration plots were consistent with a Vmax model. HCQ caused a significant reduction in Vmax and Vmax/Km values in both healthy (Vmax, 3.63 +/- 0.46 vs 1.97 +/- 0.13, ng/min/mg; protein P < 0.001; and Vmax/Km 0.265 +/- 0.015 vs 0.112 +/- 0.004, ml/min/g protein) and diabetic rats (Vmax, 0.718 +/- 0.06 vs 0.360 +/- 0.024, ng/min/mg protein; and Vmax/Km, 0.05 +/- 0.002 vs 0.023 +/- 0.001, ml/min/g protein). Significant reduction in the V was observed in the presence of racemic (rac)-, R-, or S-HCQ. Ranking of the inhibitory potency was HCQ > S = R except at highest examined concentration (20 mg/mL) which was HCQ > S > R. In conclusion, the effect of HCQ on insulin degradation appears to be, in part, through inhibition of cytosolic insulin metabolizing enzyme. The effect is not stereoselective except at high concentrations. The R- and S-HCQ may have synergistic effects on inhibition of insulin degradation.  相似文献   

11.
The binding parameters of a number of ADP or ATP analogs to the adenine nucleotide carrier in mitochondria and inside-out submitochondrial particles have been explored by means of two specific inhibitors, carboxyatractyloside and bongkrekic acid. The nucleotides tested fell into two classes depending on the shape of the binding curve. Curvilinear Scatchard plots were obtained for the binding of ADP, ATP, adenosine 5'-triphospho-gamma-1-(5-sulfonic acid)naphthylamidate [gamma-AmNS)ATP) and adenylyl (beta,gamma)-methylenediphosphate (p[CH2]ppA); on the other hand, rectilinear Scatchard plots were obtained in the case of naphthoyl-ADP (N-ADP) and 8-bromo ADP (8Br-ADP) binding. The total number of binding sites for N-ADP and 8Br-ADP could be extrapolated with good accuracy to 1.3-1.5 nmol/mg protein; this value corresponds to the number of carboxyatractyloside-binding sites in heart mitochondria (Block, M.R., Pougeois, R. and Vignais, P.V. (1980) FEBS Lett. 117, 335-340). On the other hand, because of the curvilinearity of the Scatchard plots for the binding of ADP, ATP, (gamma-AmNS)ATP and p[CH2]ppA, the total number of binding sites for these nucleotides could only be approximated to a value higher than 1 nmol/mg protein, the exact value being probably equal to that found for N-ADP and 8Br-ADP binding, i.e. 1.3-1.5 nmol/mg protein. Curvilinearity of Scatchard plots was discussed in terms of negative interactions between nucleotide-binding sites located on the same face of the adenine nucleotide carrier. A possible relationship between the features of the binding plots and the transportable nature of the nucleotide is discussed. Contrary to the enhancing effect of bongkrekic acid on [14C]ADP uptake observed essentially in nucleotide-depleted heart mitochondria (Klingenberg, M., Appel, M., Babel, W. and Aquila, H. (1983) Eur. J. Biochem. 131, 647-654), binding of bongkrekic acid to nondepleted heart mitochondria was found to partially displace previously bound [14C]ADP. These opposite effects of bongkrekic acid may be explained by assuming that bongkrekic acid is able to abolish negative cooperativity between external (cytosolic) ADP-binding sites.  相似文献   

12.
Uptake of (75Se) added in vitro was followed in mitochondria isolated from Trigonella foenum-graecum seedlings grown under different Se status (0.5-1.0 ppm) and with added mimosine (0.1 mM). Uptake of 75Se followed with added Na2 75SeO3 upto 20 microM in the medium was nonlinear in all the groups. Kinetic analyses of the uptake of 75Se for 1 min were carried out for all the groups. The results indicated a cooperative effect during Se transport. Graphical analyses using the Hill plot and Scatchard plot confirmed the existence of negative cooperativity during 75Se uptake. Scatchard plots were biphasic, suggesting the probable presence of two classes of binding sites. The presence of succinate or ATP in the incubation medium inhibited 75Se uptake by 40%. Studies with mitochondrial respiratory inhibitors indicated the uptake to be energy independent. A decrease in the uptake of 75Se by 40% effected by HgCl2, N-ethyl maleimide, and iodoacetate confirmed the interaction of active thiols in the process. The present study confirms the controlled nature of 75Se uptake by plant mitochondria.  相似文献   

13.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10--20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1--2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0-10(8) M-1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

14.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

15.
L K Unni  S M Somani 《Life sciences》1985,36(14):1389-1396
The binding of 3H-physostigmine (3H-Ph) to human and rat plasma proteins and crystalline serum albumin was studied by ultrafiltration technique. This study showed that the percentage of 3H-Ph bound to rat plasma slightly decreased from 49% to 41% whereas human plasma showed an increase in binding from 29% to 43% over a 50-fold increase in drug concentration. Human plasma samples which were collected in a bag coated with citrate phosphate dextrose adenine-1 solution bound 50% less 3H-Ph than samples collected with EDTA indicating a drug-drug interaction between 3H-Ph and anticoagulants. No significant change in binding was observed if the samples were frozen prior to use. Scatchard plots for binding of 3H-Ph resulted in a positive slope for human plasma and a negative slope for rat plasma; whereas curvilinear Scatchard plots with negative slopes were obtained for binding to human and rat crystalline serum albumin.  相似文献   

16.
We studied the binding and degradation of stable, soluble heat aggregates of 125I-IgG (A-IgG) by monocytes from 30 patients with systemic lupus erythematosus (SLE) and 30 normals. Relative avidities (KE) for Fc receptor (FcR) binding of A-IgG and maximal binding of A-IgG by monocytes were determined from Scatchard plots of binding data obtained at 4 degrees C. Rates of degradation (Vmax) of A-IgG at 37 degrees C were calculated from Lineweaver-Burke plots of the Michaelis-Menton equation. KE were decreased in SLE monocytes (15.5 X 10(-9) L/M) as compared with normals (20.1 X 10(-9) L/M, p less than 0.005) and Vmax were decreased for SLE (0.89 ng/hr) as compared with normals (1.11 ng/hr, p less than 0.005). The maximal FcR binding by SLE monocytes was not statistically different in SLE patients and normals, but monocytes from SLE patients with active disease showed a lower maximal binding capacity for A-IgG (4.9 ng/10(5) cells) than normals (5.4 ng/10(5) cells, p less than 0.05). KE and Vmax in SLE were also lower for patients with active disease than for normal subjects. KE in patients whose anti-ssDNA binding was greater than 20% were lower than for those with DNA binding of less than 20% (p less than 0.005). These data suggest that patients with active SLE have diminished numbers of available FcR on their circulating monocytes, possibly due to interiorization of FcR during endocytosis of endogenous circulating immune complexes.  相似文献   

17.
This study aimed at evaluating the influence of sparteine sulfate either upon basal plasma glucose and insulin or glucose-induced insulin secretion in normal man. Thirteen overnight fasted volunteers took part in this study; five of them were submitted to sparteine sulfate bolus (15 mg in 10 ml of saline solution) followed by a slow infusion (90 mg/100 ml X 60 min) and eight subjects underwent two different glucose pulses (20 gr. i.v.) in absence or in presence of sparteine, infused as described above. In basal conditions, along with sparteine infusion, plasma glucose showed a progressive and significant decrease (P less than 0.0001) and plasma insulin was significantly higher from min 10 to 120' (P less than 0.0005-0.001). Even during the glucose-induced insulin secretion, in the presence of sparteine infusion, plasma glucose levels were significantly lower while plasma insulin levels were significantly higher when compared to those observed after glucose alone. The acute insulin response (AIR) was 42 +/- 10 microU/ml after glucose alone vs 67 +/- 9 microU/ml after glucose plus sparteine (P less than 0.05). Total insulinemic areas were significantly different being 1410 +/- 190 vs 2250 +/- 310 microU/ml/min (P less than 0.001) during glucose and glucose plus sparteine infusion, respectively. This study thereby, demonstrates that in normal man sparteine sulfate, administrated by intravenous infusion, is able to increase either basal or glucose-induced insulin secretion.  相似文献   

18.
As a function of buffer pH, [125I]-insulin binding to rat mammary cells, rat adipocytes, or membranes prepared therefrom, at 4 degrees or 20 degrees C, showed 2 peaks in different buffers. Specific insulin binding at the pH 7.7. peak (100 +/- 11%) was lower than at pH 8.8 (140 +/- 17%) with no change in nonspecific binding. Although insulin stimulation of glucose uptake into fat cells was highest at pH 7.5, this response was also seen at pH 8.6. Scatchard affinity profiles, or in the kinetics of dissociation. Insulin degradation (< 10%) and binding to insulin antibody were similar over the pH range of 7 to 9.  相似文献   

19.
Binding kinetics of porcine 125I-insulin were studied in synaptosomal and microsomal fractions of rat brain cortex. Receptor binding was temperature- and pH-dependent with optimum at 4°C and pH 8.0–8.3. At 15°C, steady state binding was heterogenous, and Scatchard analysis revealed two classes of receptors with Kd of 2 nmol/l and 40 nmol/l in amounts of 50 pmol/g and 200 pmol/g of membrane protein. Dissociation kinetics were biexponential with T12 of about 5 min and 180 min, and in contrast to other cell-types, not influenced by negative cooperativity. No receptor-mediated insulin degradation was detectable at 37°C in the presence of bacitracin. Insulin analogues inhibited 125I-insulin binding with potencies relative to porcine insulin (%): human insulin 100, rat insulin (I+II) 71, coypu insulin 47, rat multiplication stimulating activity 8, porcine proinsulin 5, among which the three last values were significantly higher than in rat liver and fat cells. No competition was observed with porcine relaxin and mouse nerve growth factor up to about 1 μmol/l. Receptors were present in all regions of central nervous system with highest concentrations in the cerebral cortex, cerebellum and olfactory bulb, and lowest in the pons, medulla oblongata and spinal cord. In conclusion, insulin receptors in rat brain cortex are functionally different from other tissues regarding the insulin specificity and the absence of negative cooperativity. It is suggested that an insulin receptor subtype in rat brain mediates the growth activity of insulin on nerve cells.  相似文献   

20.
We studied insulin degradation in human cultured lymphocytes (RPMI-1788 line) with a small but significant number of lysosomes under the electron microscope. Insulin degradation determined by the TCA solubility method was 64.6 +/- 1.2% (mean +/- SEM) at a trace concentration after the incubation with 2.0 x 10(7) cells (4.0 x 10(7) cells/ml) for 60 min at 37 degrees C. Because insulin degradation was 54.6 +/- 7.0% in the cell-free buffer in which 2.0 x 10(7) cells were previously incubated, most of the insulin was degraded outside of the cells. Gel filtration of the radioactive materials also revealed that most of the labeled insulin in the medium was degraded, and the main peak of the cell-associated radioactivities was intact labeled insulin. Chloroquine, a lysosomotropic agent, failed not only to increase insulin binding but also to decrease the insulin degradation. Other lysosomal protease inhibitors, antipain and leupeptin had also no effect on insulin degradation. In contrast, bacitracin (500 micrograms/ml) significantly decreased the insulin degradation analyzed by TCA solubility, receptor-rebinding, and the gel filtration method. These results suggest that insulin molecules are degraded by the enzymes leaked from the cells. The non-receptor mediated process, which is the bacitracin sensitive pathway, might be a general mechanism of insulin degradation in human cultured lymphocytes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号