首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Cysteamine is oxidized to hypotaurine by an enzyme extracted from horse kidney, with sulphur or sulphide acting as a cofactor. It has been now found that, when the enzyme is omitted, sulphur and sulphide are able to catalyse the oxidation of cysteamine to cystamine by molecular oxygen. 2. Methylene blue may be used in catalytic amounts as a cofactor in the enzymic oxidation of cysteamine to hypotaurine in the place of sulphur or sulphide. The effect of methylene blue is not light-dependent and is not abolished by catalase. Other redox dyes with E'(0) higher than that of methylene blue are also used as cofactors. 3. A property common to all the cofactors is that they are necessary for the enzymic process in catalytic amounts, though they depress the final amount of hypotaurine produced when added over a critical concentration. All the cofactors share also the property of being catalysts for the non-enzymic oxidation of cysteamine to cystamine. 4. Methylene blue is reduced by cysteamine under anaerobic conditions, and is reoxidized in the presence of air. The rate of the reduction is not accelerated by the enzyme, indicating that the dye does not act in this reaction as a hydrogen carrier from the enzyme to oxygen. The possible mechanism of action of methylene blue and of the other cofactors is discussed.  相似文献   

2.
The subcellular location of taurine, and its precursor, hypotaurine, within human neutrophils has been examined by nitrogen cavitation, Percoll-gradient centrifugation and HPLC analysis. Hypotaurine and taurine were found to reside within the cytosolic compartment of the cell. The ratio of taurine to hypotaurine is approx 50:1. The cytosolic concentration of taurine is approx. 50 mM. The concentration of hypotaurine decreased by 80% when resting neutrophils were converted into actively respiring cells by exposure to opsonized zymosan. These results prompted in vitro studies on the antioxidant properties of hypotaurine. We demonstrate by EPR spectroscopy that hypotaurine competes with 5,5'-dimethyl-1-pyrroline N-oxide) (DMPO) for hydroxyl radicals, and that it is the sulfinyl group which confers hydroxyl radical scavenging activity to it. Following its exposure to hydroxyl radicals, two oxidation products were isolated by HPLC, one of which has been identified as taurine. The biological roles of hypotaurine and taurine in the neutrophil are discussed with respect to their antioxidant properties and subcellular location within the cell.  相似文献   

3.
An assay has ken developed for total sulphur which is based on a wet oxidation and measurement with a spectrophotofluorometer of light scattering by barium sulphate. The method has been adapted to the measurement of isethionate in squid nerve and blood, in other cephalopod nerve, and in the nerve tissue of other species including mammals. A correlation has been found between isethionate contents and the activity in the same tissues of one kind of DFP-hydrolysing enzyme, the highest levels of both being in squid nerve. Squid nerve also took up cysteine rapidly and metabolized it predominantly to hypotaurine but not to isethionate. We speculate that a hypotaurine derivative is a reserve form of isethionate, and that the so-called DFPase is involved in the release of hypotaurine and its metabolism to isethionate as needed.  相似文献   

4.
The rate at which taurine is synthesized in cells is unclear. This study reports the rate constants for taurine, hypotaurine, and other precursor molecules with hydrogen peroxide and superoxide. Raman spectroscopy permitted direct observation of reactions between hydrogen peroxide and the sulfinate and dithiol precursors of taurine. No observable reaction occurred between hydrogen peroxide and the sulfonates taurine or cysteate. Superoxide reacts with hypotaurine, taurine, and cysteate, although hypotaurine engages in rapid side reactions with a tetrazolium dye. Superoxide-produced radical intermediates for hypotaurine and taurine reacted with the nitroxyl radical-containing molecule TEMPONE. Hypotaurine oxidation by superoxide is calculated to occur at a rate sufficient to produce intracellular concentrations of taurine in humans. Hypotaurine's and taurine's reactions as antioxidants are predicted to occur at a fraction of the rate of enzyme-based antioxidant systems, but they may reach similar rates when hypotaurine is present at millimolar concentration in an intracellular compartment.  相似文献   

5.
The disulfide-containing molecule cystamine and the thiosulfonate thiotaurine are of interest as therapeutics. Both are precursors of taurine, but the chemistry of their metabolism is not clear. The rates at which these molecules are metabolized is also unknown. The chemistry and rate constants have been determined for a process in which cystamine is converted in four reactions to thiotaurine. Cystamine is oxidized by diamine oxidase with a specificity constant comparable to other diamine substrates. The rapid hydrogen peroxide-mediated oxidation of cystaldimine yields reactive glyoxal and thiocysteamine, which quickly performs transsulfuration with hypotaurine. Thiotaurine reacts spontaneously with hydrogen peroxide to form taurine and sulfite, but it is 15-fold less reactive than hypotaurine as an antioxidant. An estimation of biological rates of reaction indicates that cystamine is likely to be oxidized by diamine oxidase in vivo, but its metabolic products will be diverted to molecules other than thiotaurine.  相似文献   

6.
There are only two known thiol dioxygenase activities in mammals, and they are ascribed to the enzymes cysteine dioxygenase (CDO) and cysteamine (2-aminoethanethiol) dioxygenase (ADO). Although many studies have been dedicated to CDO, resulting in the identification of its gene and even characterization of the tertiary structure of the protein, relatively little is known about cysteamine dioxygenase. The failure to identify the gene for this protein has significantly hampered our understanding of the metabolism of cysteamine, a product of the constitutive degradation of coenzyme A, and the synthesis of taurine, the final product of cysteamine oxidation and the second most abundant amino acid in mammalian tissues. In this study we identified a hypothetical murine protein homolog of CDO (hereafter called ADO) that is encoded by the gene Gm237 and belongs to the DUF1637 protein family. When expressed as a recombinant protein, ADO exhibited significant cysteamine dioxygenase activity in vitro. The reaction was highly specific for cysteamine; cysteine was not oxidized by the enzyme, and structurally related compounds were not competitive inhibitors of the reaction. When overexpressed in HepG2/C3A cells, ADO increased the production of hypotaurine from cysteamine. Similarly, when endogenous expression of the human ADO ortholog C10orf22 in HepG2/C3A cells was reduced by RNA-mediated interference, hypotaurine production decreased. Western blots of murine tissues with an antibody developed against ADO showed that the protein is ubiquitously expressed with the highest levels in brain, heart, and skeletal muscle. Overall, these data suggest that ADO is responsible for endogenous cysteamine dioxygenase activity.  相似文献   

7.
《Free radical research》2013,47(11):1300-1310
Abstract

Hypotaurine and cysteine sulfinic acid are known to be readily oxidized to the respective sulfonates, taurine and cysteic acid, by several oxidative agents that may be present in biological systems. In this work, the relevance of both the carbonate anion and nitrogen dioxide radicals in the oxidation of hypotaurine and cysteine sulfinic acid has been explored by the peroxidase activity of Cu,Zn superoxide dismutase (SOD) and by pulse radiolysis. The extent of sulfinate oxidation induced by the system SOD/H2O2 in the presence of bicarbonate (CO3?– generation), or nitrite (?NO2 generation) has been evaluated. Hypotaurine is efficiently oxidized by the carbonate radical anion generated by the peroxidase activity of Cu,Zn SOD. Pulse radiolysis studies have shown that the carbonate radical anion reacts with hypotaurine more rapidly (k = 1.1 × 109 M?1s?1) than nitrogen dioxide (k = 1.6 × 107 M?1s?1). Regarding cysteine sulfinic acid, it is less reactive with the carbonate radical anion (k = 5.5 × 107 M?1s?1) than hypotaurine. It has also been observed that the one-electron transfer oxidation of both sulfinates by the radicals is accompanied by the generation of transient sulfonyl radicals (RSO2?). Considering that the carbonate radical anion could be formed in vivo at high level from bicarbonate, this radical can be included in the oxidants capable of performing the last metabolic step of taurine biosynthesis. Moreover, the protective effect exerted by hypotaurine and cysteine sulfinate on the carbonate radical anion-mediated tyrosine dimerization indicates that both sulfinates have scavenging activity towards the carbonate radical anion. However, the formation of transient reactive intermediates during sulfinate oxidation by carbonate anion and nitrogen dioxide radical may at the same time promote oxidative reactions.  相似文献   

8.
It has been suggested that taurine, hypotaurine and their metabolic precursors (cysteic acid, cysteamine and cysteinesulphinic acid) might act as antioxidants in vivo. The rates of their reactions with the biologically important oxidants hydroxyl radical (.OH), superoxide radical (O2.-), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) were studied. Their ability to inhibit iron-ion-dependent formation of .OH from H2O2 by chelating iron ions was also tested. Taurine does not react rapidly with O2.-, H2O2 or .OH, and the product of its reaction with HOCl is still sufficiently oxidizing to inactivate alpha 1-antiproteinase. Thus it seems unlikely that taurine functions as an antioxidant in vivo. Cysteic acid is also poorly reactive to the above oxidizing species. By contrast, hypotaurine is an excellent scavenger of .OH and HOCl and can interfere with iron-ion-dependent formation of .OH, although no reaction with O2.- or H2O2 could be detected within the limits of our assay techniques. Cysteamine is an excellent scavenger of .OH and HOCl; it also reacts with H2O2, but no reaction with O2.- could be measured within the limits of our assay techniques. It is concluded that cysteamine and hypotaurine are far more likely to act as antioxidants in vivo than is taurine, provided that they are present in sufficient concentration at sites of oxidant generation.  相似文献   

9.
Prevention of lens protein glycation by taurine   总被引:5,自引:0,他引:5  
Modifications in lens protein structure and function due to nonenzymic glycosylation and oxidation have been suggested to play a significant role in the pathogenesis of sugar and senile cataracts. The glycation reaction involves an initial Schiff base formation between the protein NH2 groups and the carbonyl group of a reducing sugar. The Schiff base then undergoes several structural modifications, via some oxidative reactions involving oxygen free radicals. Hence certain endogenous tissue components that may inhibit the formation of protein-sugar adduct formation may have a sparing effect against the cataractogenic effects of sugars and reactive oxygen. The eye lens is endowed with significant concentration of taurine, a sulfonated amino acid, and its precursor hypotaurine. It is hypothesized that taurine and hypotaurine may have this purported function of protecting the lens proteins against glycation and subsequent denaturation, in addition to their other functions. The results presented herein suggest that these compounds are indeed capable of protecting glycation competitively by forming Schiff bases with sugar carbonyls, and thereby preventing the glycation of lens proteins per se. In addition, they appear to prevent oxidative damage by scavenging hydroxyl radicals. This was apparent by their preventive effect against the formation of the thiobarbituric acid reactive material generated from deoxy-ribose, when the later was exposed to hydroxyl radicals generated by the action of xanthine oxidase on hypoxanthine in presence of iron.  相似文献   

10.
The protective activity of hypotaurine (HTAU) and cysteine sulphinic acid (CSA) on peroxynitrite-mediated oxidative damage has been assessed by monitoring different target molecules, i.e. tyrosine, dihydrorhodamine-123 (DHR) and glutathione (GSH). The inhibition of tyrosine oxidation exerted by HTAU and CSA both in the presence and the absence of bicarbonate can be ascribed to their ability to scavenge hydroxyl (OH) and carbonate (CO3•-) radicals. HTAU and CSA also reduce tyrosyl radicals, suggesting that this repair function of sulphinates might operate as an additional inhibiting mechanism of tyrosine oxidation. In the peroxynitrite-dependent oxidation of DHR, the inhibitory effect of HTAU was lower than that of CSA. Moreover, while HTAU and CSA competitively inhibited the direct oxidation of GSH by peroxynitrite, HTAU was again poorly effective against the oxidation of GSH mediated by peroxynitrite-derived radicals. The possible involvement of secondary reactions, which could explain the difference in antioxidant activity of HTAU and CSA, is discussed.  相似文献   

11.
Hypotaurine is the precursor of taurine production from L-cysteinesulfinate. It is recognized that hypotaurine production in the liver occurs in cytosol. In the present study, hypotaurine production from L-cysteinesulfinate in rat liver mitochondria was investigated. The mitochondrial preparation prepared according to the method of Hogeboom and washed repeatedly with 0.25 M sucrose solution was incubated with L-cysteinesulfinate. Products were derivatized with dabsyl chloride and dabsylated amino acids were analyzed by RP-HPLC. Presence of a peak corresponding to dabsyl-hypotaurine was confirmed. The peak of dabsyl-hypotaurine was converted quantitatively to dabsyl-taurine by the treatment with H(2)O(2). Optimum pH of the reaction was shown to be broad between 6.0 and 7.8 and Km for L-cysteinesulfinate was 0.11 mM. Results indicate the presence of L-cysteinesulfinate decarboxylase activity in liver mitochondria. Mitochondrial cysteine metabolism was summarized and possible antioxidant roles of cysteine metabolites including hypotaurine in mitochondria are discussed.  相似文献   

12.
Invertebrates at hydrothermal vents and cold seeps must cope with high levels of toxic H2S. In addition, these and all marine invertebrates must balance internal osmotic pressure with that of the ocean. Cells usually do so with organic osmolytes, primarily free amino acids (e.g., taurine, glycine) and methylamines (e.g., betaine). At vents and seeps, clams, mussels, and vestimentiferans with thiotrophic endosymbionts have high levels of hypotaurine and thiotaurine (a product of hypotaurine and HS-). These serve as osmolytes but their primary function may be to transport and/or detoxify sulfide; indeed, thiotaurine has been proposed to be a marker of thiotrophic symbiosis. To test this, we analyzed Depressigyra globulus snails and Lepetodrilus fucensis limpets from Juan de Fuca Ridge vents (1,530 m). Neither has endosymbionts, though the latter has thiotrophic ectosymbionts. Some specimens were rapidly frozen, while other live ones were kept in laboratory chambers, some with and others without sulfide. Non-vent gastropods from a variety of depths (2-3,000 m) were also collected. Tissues were analyzed for major osmolytes and taurine derivatives. The dominant osmolytes of non-vent snails were betaine in all species, and either taurine in shallow-living species or scyllo-inositol, glycerophosphorylcholine, and other amino acids in deep-sea species. In contrast, the dominant osmolytes were hypotaurine and betaine in D. globulus, and hypotaurine in L. fucensis. Both species had thiotaurine (as well as hypotaurine) at levels much greater than previously reported for vent and seep animals without endosymbionts. The ratio of thio- to thio- plus hypotaurine, a possible indicator of sulfide exposure, decreased in both species when kept in laboratory chambers with low or no sulfide, but stayed at high levels in snails kept with 3-5 mM sulfide. Thus, in some vent animals without endosymbionts, sulfide may be detoxified via conversion of hypotaurine to thiotaurine. The latter may be a marker of high sulfide exposure but not of thiotrophic endosymbionts.  相似文献   

13.
The protective activity of hypotaurine (HTAU) and cysteine sulphinic acid (CSA) on peroxynitrite-mediated oxidative damage has been assessed by monitoring different target molecules, i.e. tyrosine, dihydrorhodamine-123 (DHR) and glutathione (GSH). The inhibition of tyrosine oxidation exerted by HTAU and CSA both in the presence and the absence of bicarbonate can be ascribed to their ability to scavenge hydroxyl (?OH) and carbonate (CO3??) radicals. HTAU and CSA also reduce tyrosyl radicals, suggesting that this repair function of sulphinates might operate as an additional inhibiting mechanism of tyrosine oxidation. In the peroxynitrite-dependent oxidation of DHR, the inhibitory effect of HTAU was lower than that of CSA. Moreover, while HTAU and CSA competitively inhibited the direct oxidation of GSH by peroxynitrite, HTAU was again poorly effective against the oxidation of GSH mediated by peroxynitrite-derived radicals. The possible involvement of secondary reactions, which could explain the difference in antioxidant activity of HTAU and CSA, is discussed.  相似文献   

14.
Hypotaurine is considered to be an intermediate in the major pathway for the biosynthesis of taurine in mammals yet is rarely detected in mammalian tissue. The activity of cysteinesulfinic acid decarboxylase, the enzyme presumably responsible for the biosynthesis of hypotaurine, is frequently present in great amounts in tissue, whereas the mechanism for the conversion of hypotaurine to taurine is poorly understood, there being some doubt at present if an enzyme exists for such a purpose. This paper reports the accumulation of hypotaurine in the liver of rats regenerating after partial hepatectomy. Further, the formation and accumulation of [35S]hypotaurine from [35S]methionine under the same conditions was observed. No hypotaurine was detected in liver of sham-operated control animals, even after the intraperitoneal injection of authentic hypotaurine. These observations suggest that rat liver normally possesses a mechanism for the rapid conversion of hypotaurine to taurine and that this mechanism is impeded in liver regenerating after partial hepatectomy.  相似文献   

15.
It has been proposed that hypotaurine may function as an antioxidant in vivo. We investigated whether this compound can act as protective agent able to prevent damage from peroxynitrite, a strong oxidizing and nitrating agent that reacts with several biomolecules. The results showed that the compound efficiently protects tyrosine against nitration, alpha1-antiproteinase against inactivation, and human low-density lipoprotein against modification by peroxynitrite. Hypotaurine is also highly effective in inhibiting peroxynitrite-mediated nitration of tyrosine in the presence of added bicarbonate. This result suggests that hypotaurine could play an important role as protective agent under physiological conditions. Moreover, it was found that cysteine sulfinic acid, but not taurine, possesses protective properties against peroxynitrite-dependent damage similar to hypotaurine. These findings indicate that the protective effects exerted by these compounds may be attributable to the presence of the sulfinic group oxidizable into sulfonate by scavenging peroxynitrite and/or its derived species.  相似文献   

16.
Despite advances in vitrification techniques for sperm cryopreservation, cryo-damages of sperm caused by generation of reactive oxygen species (ROS) continue to impede implementation of this technique. This study analyses the effects of taurine and hypotaurine as anti-oxidants during vitrification of human sperms. The study was performed in two steps. In the first step, 20 normospermic semen samples were vitrified in the presence of varying concentrations of taurine and hypotaurine, and their effects as anti-oxidant agents on classical sperm parameters, hyaluronan-binding assay (HBA), lipid peroxidation (LPO) and acrosome reaction (AR) were studied. Statistical analyses showed that the sperm parameters in all vitrified groups decreased significantly (P < 0.05) compared to the fresh group. However, HBA and acrosome integrity in vitrified groups containing taurine and 50 mM of hypotaurine were better than in the control group (P < 0.05). The morphology of the vitrified group was good only in the group that contained 50 mM of hypotaurine (P < 0.05).Based on the results from the first step, 50 mM of hypotaurine was considered the ideal anti-oxidant formulation and further tests were carried out on 10 normospermic semen samples with this protecting agent. In addition to the mentioned parameters, the expression of heat shock proteinA2 (HSPA2) was studied in the vitrified group with 50 mM hypotaurine, warmed under two different warming temperatures 37 and 42 °C. 50 mM Hypotaurine was found to equally improve motility, morphology, HBA, and AR after warming at 37 °C and 42 °C (P < 0.05). However, at both warming temperatures, the expression of HSPA2 was reduced in all vitrified groups comparing to the fresh group (P < 0.05). In conclusion, taurine and hypotaurine antioxidants, especially 50 mM hypotaurine, are able to reduce deleterious cryo-injuries on morphology, acrosome and HBA and improve sperm recovery at both warming temperatures (37 and 42 °C). However, they do not have any protective action on expression of HSPA2.  相似文献   

17.
Urocanase is inactivated in intact cells of Pseudomonas putida and photoactivated by brief exposure of the cells to the UV radiation in sunlight. The dark reversion (inactivation) in vitro is explained by the formation of a sulfite-NAD adduct. Our objective was to investigate the dark reversion in vivo. Various compounds were added to P. putida cells, and the reversion was measured, after sonication, by comparison of the activity before and after UV irradiation. Sulfite, cysteine sulfinate, and hypotaurine enhanced the reversion of urocanase in resting cells. The reversion was time and concentration dependent. Sulfite modified the purified enzyme, but cysteine sulfinate and hypotaurine could not, indicating that those two substances had to be metabolized to support the reversion. Both of those compounds yielded sulfite when they were incubated with cells. Transaminases form sulfite from cysteine sulfinate. P. putida extract contained a transaminase whose activity involved as alpha-keto acid and either cysteine sulfinate or hypotaurine for (i) production of sulfite, (ii) disappearance of substrates, (iii) formation of corresponding amino acids, and (iv) urocanase reversion. Porcine crystalline transaminase caused reversion of highly purified P. putida urocanase with cysteine sulfinate and alpha-ketoglutarate. We conclude that in P. putida cysteine sulfinate or hypotaurine is catabolized in vivo by a transaminase reaction to sulfite, which modifies urocanase to a form that can be photoactivated. We suggest that this photoregulatory process is natural because it occurs in cells with the aid of sunlight and cellular metabolism.  相似文献   

18.
Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez−/−) were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis–time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine) and taurine were not affected. Lack of hypotaurine in Ez−/− mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.  相似文献   

19.
Taurine and zinc possess neurotrophic and neuroprotective properties, and they have been demonstrated to interact in the central nervous system (CNS). The aim of this work was to determine taurine, hypotaurine, and zinc levels during postnatal development and any possible significant correlation between them in selective areas of the CNS with differential taurine level regulation and intrinsic capacity to proliferate. Taurine and hypotaurine content (nM/region) and concentration (nM/mg protein) and total zinc levels were determined in the retina, hippocampus, and dentate gyrus of the rat at postnatal days 5, 10, 15, 20, 30, and 50. Taurine and hypotaurine increased during development in the retina without significant correlation between them. In the hippocampus there was a progressive decrease, and in the dentate gyrus there was an initial increase and a posterior decrease of taurine and hypotaurine levels. Correlation between the two amino acids was observed at P10, P15, and P50 for the hippocampus and at P15, P30, and P50 for the dentate gyrus. The variations in total zinc levels followed a biphasic behavior, with an early decrease and later increase. Significant and positive correlation of zinc and taurine was only observed in the hippocampus at P30 and P50 and negative in the dentate gyrus at P30. No significant correlation was obtained for the retina. The maintenance of taurine levels in specific CNS areas does not seem to be related to the availability of the precursor, hypotaurine, which might have a role by itself. There are critical postnatal periods during which there is a preservation of taurine, hypotaurine, or zinc levels. It seems that these requirements could be related to zinc-taurine interactions.  相似文献   

20.
Hypotaurine is an intermediate in taurine biosynthesis from cysteine in astrocytes. Although hypotaurine functions as an antioxidant and organic osmolyte, its physiological role in the central nervous system remains unclear. This study used behavioral assessments to determine whether hypotaurine influenced nociceptive transmission in acute, inflammatory, and neuropathic pain. The tail flick, paw pressure, and formalin tests were performed in male Sprague-Dawley rats to examine the effects of the intrathecal administration of hypotaurine (100, 200, 400, 600?μg) on thermal, mechanical, and chemical nociception. Chronic constriction injury (CCI) to the sciatic nerve was induced in the rats, and the electronic von Frey test and plantar test were performed to assess the effects on neuropathic pain. To determine which neurotransmitter pathway(s) was involved in the action of hypotaurine, in this study, we examined how the antagonists of spinal pain processing receptors altered the effect of 600?μg hypotaurine. To explore whether hypotaurine affected motor performance, the Rotarod test was conducted. Hypotaurine had antinociceptive effects on thermal, mechanical, and chemical nociception in the spinal cord. In CCI rats, hypotaurine alleviated mechanical allodynia and thermal hyperalgesia. These effects were reversed completely by pretreatment with an intrathecal injection of strychnine, a glycine receptor antagonist. Conversely, hypotaurine did not affect motor performance. This study demonstrated that intrathecal hypotaurine suppressed acute, inflammatory, and neuropathic pain. Hypotaurine may regulate nociceptive transmission physiologically by activating glycinergic neurons in the spinal cord, and it is a promising candidate for treating various pain states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号