首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

2.
Tea, the major source of dietary flavonoids, particularly the epicatechins, signifies the second most frequently consumed beverage worldwide, which varies its status from a simple ancient cultural drink to a nutrient component, endowed possible beneficial neuro-pharmacological actions. Accumulating evidence suggests that oxidative stress, resulting in reactive oxygen species generation, plays a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers and metal chelating agents, such as natural tea polyphenols, for therapy. Vast epidemiology data indicate a correlation between occurrence of neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases, and green tea consumption. In particular, recent literature strengthens the perception that diverse molecular signaling pathways, participating in the neuroprotective activity of the major green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), renders this natural compound as potential agent to reduce the risk of various neurodegenerative diseases. In the current review, we discuss the studies concerning the mechanisms of action implicated in EGCG-induced neuroprotection and discuss the vision to translate these findings into a lifestyle arena.  相似文献   

3.
Accumulating evidence supports the hypothesis that brain iron misregulation and oxidative stress (OS), resulting in reactive oxygen species (ROS) generation from H2O2 and inflammatory processes, trigger a cascade of events leading to apoptotic/necrotic cell death in neurodegenerative disorders, such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases, and amyotrophic lateral sclerosis (ALS). Thus, novel therapeutic approaches aimed at neutralization of OS-induced neurotoxicity, support the application of ROS scavengers, transition metals (e.g. iron and copper) chelators and non-vitamin natural antioxidant polyphenols, in monotherapy, or as part of antioxidant cocktail formulation for these diseases. Both experimental and epidemiological evidence demonstrate that flavonoid polyphenols, particularly from green tea and blueberries, improve age-related cognitive decline and are neuroprotective in models of PD, AD and cerebral ischemia/reperfusion injuries. However, recent studies indicate that the radical scavenger property of green tea polyphenols is unlikely to be the sole explanation for their neuroprotective capacity and in fact, a wide spectrum of cellular signaling events may well account for their biological actions. In this article, the currently established mechanisms involved in the beneficial health action and emerging studies concerning the putative novel molecular neuroprotective activity of green tea and its major polyphenol (-)-epigallocatechin-3-gallate (EGCG), will be reviewed and discussed.  相似文献   

4.
Oxidative stress is a main mediator in nitric oxide (NO) -induced neurotoxicity and has been implicated in the pathogenesis of many neurodegenerative disorders. Green tea polyphenols are usually expected as potent chemo-preventive agents due to their ability of scavenging free radicals and chelating metal ions. However, not all the actions of green tea polyphenols are necessarily beneficial. In the present study, we demonstrated that higher-concentration green tea ployphenols significantly enhanced the neurotoxicity by treatment of sodium nitroprusside (SNP), a nitric oxide donor. SNP induced apoptosis in human neuroblastoma SH-SY5Y cells in a concentration and time-dependent manner, as estimated by cell viability assessment, FACScan analysis and DNA fragmentation assay, whereas treatment with green tea polyphenols alone had no effect on cell viability. Pre-treatment with lower-dose green tea polyphenols (50 and 100 microm) had only a slightly deleterious effect in the presence of SNP, while higher-dose green tea polyphenols (200 and 500 microm) synergistically damaged the cells severely. Further research showed that co-incubation of green tea polyphenols and SNP caused loss of mitochondrial membrane potential, depletion of intracellular GSH and accumulation of reactive oxygen species, and exacerbated NO-induced neuronal apoptosis via a Bcl-2 sensitive pathway.  相似文献   

5.
Green tea, owing to its beneficial effect on health, is becoming more and more popular worldwide. (-)-Epigallocatechin-3-gallate (EGCG), the main ingredient of green tea polyphenols, is a known protective effect on injured neurons in neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. Paraquat (PQ) is a widely used herbicide that possesses a similar structure to MPP(+) and is toxic to mesencephalic dopaminergic neurons. In the present study, PQ-injured PC12 cells were chosen as an in vitro cell model of Parkinson's disease and the neuroprotective effects of EGCG were investigated. The results showed that EGCG attenuated apoptosis of PC12 cells induced by PQ. The possible mechanism may be associated with maintaining mitochondrial membrane potential, inhibiting caspase-3 activity and downregulating the expression of pro-apoptotic protein Smac in cytosol. The present study supports the notion that EGCG could be used as a neuroprotective agent for treatment of neurodegenerative diseases.  相似文献   

6.
In the present study we demonstrate neuroprotective property of green tea extract and (-)-epigallocatechin-3-gallate in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease. N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxin caused dopamine neuron loss in substantia nigra concomitant with a depletion in striatal dopamine and tyrosine hydroxylase protein levels. Pretreatment of mice with either green tea extract (0.5 and 1 mg/kg) or (-)-epigallocatechin-3-gallate (2 and 10 mg/kg) prevented these effects. In addition, the neurotoxin caused an elevation in striatal antioxidant enzymes superoxide dismutase (240%) and catalase (165%) activities, both effects being prevented by (-)-epigallocatechin-3-gallate. (-)-Epigallocatechin-3-gallate itself also increased the activities of both enzymes in the brain. The neuroprotective effects are not likely to be caused by inhibition of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine conversion to its active metabolite 1-methyl-4-phenylpyridinium by monoamine oxidase-B, as both green tea and (-)-epigallocatechin-3-gallate are very poor inhibitors of this enzyme in vitro (770 microg/mL and 660 microM, respectively). Brain penetrating property of polyphenols, as well as their antioxidant and iron-chelating properties may make such compounds an important class of drugs to be developed for treatment of neurodegenerative diseases where oxidative stress has been implicated.  相似文献   

7.
Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (<0.1 μg/ml) of unfractionated green tea polyphenols (GTPP) and low concentrations (<0.5 μM) of their active ingredient, epigallocatechin-3-gallate (EGCG), potentiated the neuritogenic ability of a low concentration (2 ng/ml) of BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67 kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady-state generation (1 μM), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.  相似文献   

8.
Green tea polyphenols have aroused considerable attention in recent years for preventing oxidative stress related diseases including cancer, cardiovascular disease, and degenerative disease. Neurodegenerative diseases are cellular redox status dysfunction related diseases. The present study investigated the different effects of the five main components of green tea polyphenols on 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells, the in vitro model of Parkinson's disease (PD). When the cells were treated with five catechins respectively for 30 min before exposure to 6-OHDA, (-)-epigallocatechins gallate (EGCG) and (-)-epicatechin gallate (ECG) in 50-200 microM had obvious concentration-dependent protective effects on cell viability, while (-)-epicatechin (EC), (+)-catechin ((+)-C), and (-)-epigallocatechin (EGC) had almost no protective effects. The five catechins also showed the same pattern described above of the different effects against 6-OHDA-induced cell apoptotic characteristics as analyzed by cell viability, fluorescence microscopy, flow cytometry, and DNA fragment electrophoresis methods. The present results indicated that 200 microM EGCG or ECG led to significant inhibition against typical apoptotic characteristics of PC12 cells, while other catechins had little protective effect against 6-OHDA-induced cell death. Therefore, the classified protective effects of the five catechins were in the order ECG> or = EGCG>EC> or = (+)-C>EGC. The antiapoptotic activities appear to be structurally related to the 3-gallate group of green tea polyphenols. The present data indicate that EGCG and ECG might be potent neuroprotective agents for PD.  相似文献   

9.
Responses to oxidative stress contribute to damage caused by chronic cerebral hypoperfusion, which is characteristic of certain neurodegenerative diseases. We used a rat model of chronic cerebral hypoperfusion to determine whether green tea polyphenols, which are potent antioxidants and free radical scavengers, can reduce vascular cognitive impairment and to investigate their underlying mechanisms of action. Different doses of green tea polyphenols were administered orally to model rats from 4 to 8 weeks after experimentally induced cerebral hypoperfusion, and spatial learning and memory were assessed using the Morris water maze. Following behavioral testing, oxygen free radical levels and antioxidative capability in the cortex and hippocampus were measured biochemically. The levels of lipid peroxidation and oxidative DNA damage were assessed by immunohistochemical staining for 4-hydroxynonenal and 8-hydroxy-2′-deoxyguanosine, respectively. Rats that received green tea polyphenols 400 mg/kg per day had better spatial learning and memory than saline-treated rats. Green tea polyphenols 400 mg/kg per day were found to scavenge oxygen free radicals, enhance antioxidant potential, decrease lipid peroxide production and reduce oxidative DNA damage. However, green tea polyphenols 100 mg/kg per day had no significant effects, particularly in the cortex. This study suggests that green tea polyphenols 400 mg/kg per day improve spatial cognitive abilities following chronic cerebral hypoperfusion and that these effects may be related to the antioxidant effects of these compounds.  相似文献   

10.
11.
Tea is one of the most widely consumed beverages, second only to water. Many experimental researches in laboratory animals demonstrated that tea components had an inhibitory effect on carcinogenesis at a number of organ sites. The inhibitory effects of tea against carcinogenesis have been attributed to the biologic activities of the polyphenol fraction in tea. This review summarizes experimental data on chemopreventive effects of tea polyphenols in various tumor bioassay systems. Many laboratory studies have demonstrated the inhibitory effects of green tea polyphenols, especially (-)-epigallocatechin-3-gallate (EGCG), on carcinogenesis in animals models. The majority of these studies have been conducted in mouse skin tumor models, where tea polyphenols were used either as oral feeding in drinking water or in direct local application. Most studies used 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet (UV) radiation as the tumor promoter and found anticarcinogenic effects caused by green tea polyphenols. Black tea was also found to be effective, although the activity was weaker than that of green tea in some experiments. Other studies showed that black tea polyphenols-theaflavins exhibited stronger anticarcinogenic activity than did EGCG. Caffeine in tea was also important for tea to prevent tumorigenesis. The molecular mechanisms of the cancer chemopreventive effects of tea polyphenols are not completely understood. They are most likely related to the mechanisms of biochemical actions of tea polyphenols, which include antioxidative activities, modulation of xenobiotic metabolite enzymes and inhibition of tumor promotion. In addition, we have also proposed that tea polyphenols function as cancer chemopreventive agents through modulation of mitotic signal transduction. However, the molecular mechanisms involved in this modulation need further investigation.  相似文献   

12.
Natural antioxidants for neurodegenerative diseases   总被引:5,自引:0,他引:5  
Zhao B 《Molecular neurobiology》2005,31(1-3):283-293
The author reviews the studies on the preventing effects of natural antioxidants, such as vitamins E and C, flavonoids, and polyphenols on neurodegenerative diseases, especially summarizing the results on the protective effect of ginkgo biloba extract on neuron cells, preventing effects of green tea polyphenols on apoptosis of PC12 cells (Parkinson’s disease model), preventing effects of genestien on amyloid-β-induced apoptosis of hippocampal neuronal cells (Alzhemer’s disease model), and preventing effect of Crataegus flavonoids on ischemic-reperfusion damage to the brain of the Mongolian gerbil (stroke model) in the laboratory.  相似文献   

13.
Neurodegeneration in Parkinson's, Alzheimer's, and other neurodegenerative diseases seems to be multifactorial, in that a complex set of toxic reactions including inflammation, glutamatergic neurotoxicity, increases in iron and nitric oxide, depletion of endogenous antioxidants, reduced expression of trophic factors, dysfunction of the ubiquitin-proteasome system, and expression of proapoptotic proteins leads to the demise of neurons. Thus, the fundamental objective in neurodegeneration and neuroprotection research is to determine which of these factors constitutes the primary event, the sequence in which these events occur, and whether they act in concurrence in the pathogenic process. This has led to the current notion that drugs directed against a single target will be ineffective and rather a single drug or cocktail of drugs with pluripharmacological properties may be more suitable. Green tea catechin polyphenols, formerly thought to be simple radical scavengers, are now considered to invoke a spectrum of cellular mechanisms of action related to their neuroprotective activity. These include pharmacological activities like iron chelation, scavenging of radicals, activation of survival genes and cell signaling pathways, and regulation of mitochondrial function and possibly of the ubiquitin-proteasome system. As a consequence these compounds are receiving significant attention as therapeutic cytoprotective agents for the treatment of neurodegenerative and other diseases.  相似文献   

14.
Accumulating evidence suggests that oxidative stress resulting in reactive oxygen species generation plays a pivotal role in neurodegenerative diseases, supporting the realization of the use of radical scavengers, metal chelator agents, such as the natural polyphenols for therapy. In this study, we have focused on specific identification of proteins involved in the neurorescue activity of the green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG) in a progressive model of neuronal death, induced by long-term serum deprivation of human neuroblastoma SH-SY5Y cells. The study was designed in attempt to define biomarkers for the mechanism of action of EGCG, associated with its iron chelating properties and its ability to regulate metabolic energy balance and affect cell morphology. By using mass spectrometry analysis combined with gene expression technique, we have succeeded to identify such genes and proteins (e.g. ATP synthase mitochondrial F1 complex beta, protein kinase C epsilon, nerve vascular growth factor inducible precursor and hypoxia inducible factor-1 alpha). These results strengthen the notion that the diverse molecular signaling pathways participating in the neurorescue activity of EGCG render this multifunctional compound as potential agent to reduce risk of various neurodegenerative diseases.  相似文献   

15.
Theaflavin derivatives and catechin derivatives are the major polyphenols in black tea and green tea, respectively. Several tea polyphenols, especially those with galloyl moiety, can inhibit HIV-1 replication with multiple mechanisms of action. Here we showed that the theaflavin derivatives had more potent anti-HIV-1 activity than catechin derivatives. These tea polyphenols could inhibit HIV-1 entry into target cells by blocking HIV-1 envelope glycoprotein-mediated membrane fusion. The fusion inhibitory activity of the tea polyphenols was correlated with their ability to block the formation of the gp41 six-helix bundle, a fusion-active core conformation. Computer-aided molecular docking analyses indicate that these tea polyphenols, theaflavin-3,3'-digallate (TF3) as an example, may bind to the highly conserved hydrophobic pocket on the surface of the central trimeric coiled coil formed by the N-terminal heptad repeats of gp41. These results indicate that tea, especially black tea, may be used as a source of anti-HIV agents and theaflavin derivatives may be applied as lead compounds for developing HIV-1 entry inhibitors targeting gp41.  相似文献   

16.
To investigate the ability of the production of H(2)O(2) by polyphenols, we incubated various phenolic compounds and natural polyphenols under a quasi-physiological pH and temperature (pH 7.4, 37 degrees C), and then measured the formation of H(2)O(2) by the ferrous ion oxidation-xylenol orange assay. Pyrocatechol, hydroquinone, pyrogallol, 1,2,4-benzenetriol, and polyphenols such as catechins yielded a significant amount of H(2)O(2). We also examined the effects of a metal chelator, pH, and O(2) on the H(2)O(2)-generating property, and the generation of H(2)O(2) by the polyphenol-rich beverages, green tea, black tea, and coffee, was determined. The features of the H(2)O(2)-generating property of green tea, black tea, and coffee were in good agreement with that of phenolic compounds, suggesting that polyphenols are responsible for the generation of H(2)O(2) in beverages. From the results, the possible significances of the H(2)O(2)-generating property of polyphenols for biological systems are discussed.  相似文献   

17.
Epigallocatechin-3-gallate (EGCG) is a major component of green tea polyphenols which displays potential properties of anticancer and neuroprotection. Here we show that protection of motor neuron by EGCG is associated with regulating glutamate level in organotypic culture of rat spinal cord. In this model, EGCG blocked glutamate excitotoxicity caused by threohydroxyaspartate, an inhibitor of glutamate transporter. This property of EGCG may be not due to its intrinsic antioxidative activity, because another antioxidant could not regulate glutamate level under the same condition. These results show that EGCG may be a potential therapeutic candidate for neurodegenerative diseases involving glutamate excitotoxicity such as ALS.  相似文献   

18.
Tea polyphenols, their biological effects and potential molecular targets   总被引:1,自引:0,他引:1  
Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.  相似文献   

19.
The aim of this work was to investigate the protective effects of green tea polyphenols on the cytotoxic effects of hypolipidemic agent fenofibrate (FF), a peroxisome proliferator (PP), in human HepG2 cells. The results showed that high concentrations of FF induced human HepG2 cell death through a mechanism involving an increase of reactive oxygen species (ROS) and intracellular reduced glutathione (GSH) depletion. These effects were partially prevented by antioxidant green tea polyphenols. The elevated expression of PP-activated receptors alpha (PPARalpha) in HepG2 cells induced by FF was also decreased by treatment with green tea polyphenols. In conclusion, this result demonstrates that oxidative stress and PPARalpha are involved in FF cytotoxicity and green tea polyphenols have a protective effect against FF-induced cellular injury. It may be beneficial for the hyperlipidemic patients who were administered the hypolipidemic drug fenofibrate to drink tea or use green tea polyphenols synchronously during their treatment.  相似文献   

20.
Pesticides, smoke, mycotoxins, polychlorinated biphenyls (PCBs), and arsenic are the most common environmental toxins and toxicants to humans. These toxins and toxicants may impact on human health at the molecular (DNA, RNA, or protein), organelle (mitochondria, lysosome, or membranes), cellular (growth inhibition or cell death), tissue, organ, and systemic levels. Formation of reactive radicals, lipid peroxidation, inflammation, genotoxicity, hepatotoxicity, embryotoxicity, neurological alterations, apoptosis, and carcinogenic events are some of the mechanisms mediating the toxic effects of the environmental toxins and toxicants. Green tea, the nonoxidized and nonfermented form of tea that contains several polyphenols, including green tea catechins, exhibits protective effects against these environmental toxins and toxicants in preclinical studies and to a much-limited extent, in clinical trials. The protective effects are collectively mediated by antioxidant, antiinflammatory, antimutagenic, hepatoprotective and neuroprotective, and anticarcinogenic activities. In addition, green tea modulates signaling pathway including NF-κB and ERK pathways, preserves mitochondrial membrane potential, inhibits caspase-3 activity, down-regulates proapoptotic proteins, and induces the phase II detoxifying pathway. The bioavailability and metabolism of green tea and its protective effects against environmental insults induced by pesticides, smoke, mycotoxins, PCBs, and arsenic are reviewed in this paper. Future studies with emphasis on clinical trials should identify biomarkers of green tea intake, examine the mechanisms of action of green tea polyphenols, and investigate potential interactions of green tea with other toxicant-modulating dietary factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号