首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Identification of geographical space enveloped by suitable climatic conditions (i.e., climatic niche) that support species survival over space and time is crucial in conservation biogeography. Numerous algorithms (e.g., Maxent, GARP) with increasing accuracy have been devised and are being employed to overcome the challenges of forecasting climatic niche of species with incomplete information. The current study was conducted to map the distribution of current and future climatic niche of endangered Himalayan musk deer, a species endemic to Asia. Maxent and GARP modeling algorithms were individually employed to forecast current and future climatic niche of the species using randomly collected occurrence records of the species and bioclimatic variables with 30″ resolution from ‘WorldClim’ datasets. Both the modeling processes performed optimally with regard to AUC and TSS values and forecasted an increase/expansion of climatically-suitable geographical space in the future. A final climatic niche distribution map was produced by combining the binary maps generated from each of the processes to produce a relatively realistic and potentially accurate distribution of climatic niche of the species over space and time. Conservation of forecasted suitable geographical space is recommended and future survey efforts for potentially unexplored populations of the species in the forecasted suitable area are suggested.  相似文献   

3.
杉阔混交林主要种群多维生态位特征   总被引:30,自引:4,他引:30  
在生态位空间分割基础上,应用两种不同类型的生态位宽度公式和生态位重叠公式测定了杉阔混交林不同资源空间中主要种群的多维生态位特征。结果表明:考虑资源利用率与否对生态位宽度的测度有较大影响。杉阔混交林主要种群在不同资源空间中的生态适应性不同。在同一资源空间中,种对间生态位宽度与生态位重叠并非成正相关关系。在不同资源空间中,杉木与同一其它树种之间的生态位重叠发生变化。生态位重叠与竞争之间关系在很大程度上受种对间的生物学特性的左右。研究杉阔混交林多维生态位特征对混交林营造具有指导作用。  相似文献   

4.
为有效保护和利用园林绿地中的捕食性瓢虫资源,研究了北京园林绿地中瓢虫的发生规律及生态位。采用定点定期黄板诱集法调查园林绿地捕食性瓢虫资源,然后进行了瓢虫发生时序动态、生态位宽度及生态位重叠等分析。由生态位宽度将瓢虫分为种群竞争力强、中和弱3类,由Mcnaughton优势度指数也将瓢虫分为优势种、常见种和偶见种3类;异色瓢虫、龟纹瓢虫、红点唇瓢虫和菱斑巧瓢虫既是种群竞争力强的瓢虫种类,也是园林绿地瓢虫的优势种,种群竞争力中的瓢虫种类多为瓢虫常见种,弱的种类多为瓢虫偶见种;园林绿地中优势捕食性瓢虫的发生时序动态既与园林植物上发生的蚜虫种类相关,又与园林植物种类相关;异色瓢虫与龟纹瓢虫,异色瓢虫与红点唇瓢虫,以及龟纹瓢虫与菱斑巧瓢虫全年的生态位重叠指数较高,均达0.8以上,而异色瓢虫与菱斑巧瓢虫,龟纹瓢虫与红点唇瓢虫,红点唇瓢虫与菱斑巧瓢虫全年的生态位重叠指数较小,均低于0.7。本文为有效保护园林绿地中的瓢虫资源提供了技术支撑。  相似文献   

5.
WB Monahan  MW Tingley 《PloS one》2012,7(7):e42097
The ability of species to respond to novel future climates is determined in part by their physiological capacity to tolerate climate change and the degree to which they have reached and continue to maintain distributional equilibrium with the environment. While broad-scale correlative climatic measurements of a species' niche are often described as estimating the fundamental niche, it is unclear how well these occupied portions actually approximate the fundamental niche per se, versus the fundamental niche that exists in environmental space, and what fitness values bounding the niche are necessary to maintain distributional equilibrium. Here, we investigate these questions by comparing physiological and correlative estimates of the thermal niche in the introduced North American house sparrow (Passer domesticus). Our results indicate that occupied portions of the fundamental niche derived from temperature correlations closely approximate the centroid of the existing fundamental niche calculated on a fitness threshold of 50% population mortality. Using these niche measures, a 75-year time series analysis (1930-2004) further shows that: (i) existing fundamental and occupied niche centroids did not undergo directional change, (ii) interannual changes in the two niche centroids were correlated, (iii) temperatures in North America moved through niche space in a net centripetal fashion, and consequently, (iv) most areas throughout the range of the house sparrow tracked the existing fundamental niche centroid with respect to at least one temperature gradient. Following introduction to a new continent, the house sparrow rapidly tracked its thermal niche and established continent-wide distributional equilibrium with respect to major temperature gradients. These dynamics were mediated in large part by the species' broad thermal physiological tolerances, high dispersal potential, competitive advantage in human-dominated landscapes, and climatically induced changes to the realized environmental space. Such insights may be used to conceptualize mechanistic climatic niche models in birds and other taxa.  相似文献   

6.
Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. GSCs were lost in both male and female gonads of mutants deficient for HS biosynthesis. dally, a Drosophila glypican, is expressed in the female GSC niche cells and is responsible for maintaining the GSC niche. Ectopic expression of dally in the ovary expanded the niche area, showing that dally is required for restriction of the GSC niche space. Interestingly, the other glypican, dally-like, plays a major role in regulating male GSC niche maintenance. We propose that HSPGs define the physical space of the niche by serving as trans coreceptors, mediating short-range signaling by secreted factors.  相似文献   

7.
The relationship between lineage formation and variation in the ecological niche is a fundamental evolutionary question. Two prevailing hypotheses reflect this relationship: niche conservatism and niche divergence. Niche conservatism predicts a pattern where sister taxa will occupy similar niche spaces; whereas niche divergence predicts that sister taxa will occupy different niche spaces. Widely distributed species often show distinct phylogeographic structure, but little research has been conducted on how the environment may be related to these phylogenetic patterns. We investigated the relationship between lineage divergence and environmental space for the closely related species Peromyscus maniculatus and P. polionotus utilizing phylogenetic techniques and ecological niche modeling (ENM). We estimated the phylogenetic relationship among individuals based on complete cytochrome b sequences that represent individuals from a majority of the species ranges. Niche spaces that lineages occupy were estimated by using 12 environmental layers. Differences in niche space were tested using multivariate statistics based on location data, and ENMs were employed using maximum entropy algorithms. Two similarity indices estimated significant divergence in environmental space based on the ENM. Six geographically structured lineages were identified within P. maniculatus. Nested within P. maniculatus we found that P. polionotus recently diverged from a clade occupying central and western United States. We estimated that the majority of the genetic lineages occupy distinct environmental niches, which supports a pattern of niche divergence. Two sister taxa showed niche divergence and represent different ecomorphs, suggesting morphological, genetic and ecological divergence between the two lineages. Two other sister taxa were observed in the same environmental space based on multivariate statistics, suggesting niche conservatism. Overall our results indicate that a widely distributed species may exhibit both niche conservatism and niche divergence, and that most lineages seem to occupy distinct environmental niches.  相似文献   

8.
提高生态位模型转移能力来模拟入侵物种 的潜在分布   总被引:5,自引:0,他引:5  
生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求, 模拟物种的分布。在模拟入侵物种分布时, 经典生态位模型包括模型构建于物种本土分布地, 然后将其转移并投射至另一地理区域, 来模拟入侵物种的潜在分布。然而在模型运用时, 出现了模型的转移能力较低、模拟的结果与物种的实际分布不相符的情况, 由此得出了生态位漂移等不恰当的结论。提高生态位模型的转移能力, 可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考。作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例, 从模型的构建材料(即物种分布点和环境变量)入手, 全面阐述提高模型转移能力的策略。在构建模型之前, 需要充分了解入侵物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识。在模型构建环节上, 物种分布点不仅要充分覆盖物种的地理分布和生态空间的范围, 同时要降低物种采样点偏差; 环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性, 以及不同地理种群间生态空间是否一致, 同时要降低环境变量的空间维度; 模型构建区域要真实地反映物种的地理分布范围, 并考虑种群的平衡状态。作者认为, 在生态位保守的前提下, 如果模型是构建在一个合理方案的基础上, 生态位模型的转移能力是可以保证的, 在以模型转移能力较低的现象来阐述生态位分化时需要引起注意。  相似文献   

9.
The results of an earlier effort to provide a geometrical analysis of Hutchinsonian niche space are extended. The concept of diversity of a species in niche space is introduced and the maximization of this diversity provides a rationale for a within-niche fitness distribution which is Gaussian. Niche expansion is seen as a consequence of diffusion in niche space, and an evolutionary version of the Volterra competition equations is proposed as a way to relate niche geometry with population dynamics. Applications to topics in community evolution, species packing and the statistical fitting of species abundance data are mentioned.  相似文献   

10.

Small nearshore fishes are an important part of lacustrine and functional diversity and link pelagic and benthic habitats by serving as prey for larger nearshore and offshore fishes. However, the trophic complexity of these small nearshore fishes is often unrecognized and detailed studies of their role in food webs are lacking. Here, we examined niche space patterns of small nearshore fish species using Bayesian analyses of carbon and nitrogen stable isotope data in nine freshwater lakes that are among the largest lakes in Minnesota. We found considerable variability in niche areas within species and high variability in niche overlap across species. At the assemblage level, niche overlap (average diet overlap of all species pairs at a lake) decreased as whole-lake species richness increased, possibly indicating a greater degree of resource specialization in more speciose lakes. Overall fish niche space was weakly but significantly related to niche space of their invertebrate prey. Although nearshore benthic resources contributed to fish diets in all lakes, all fish species also had non-negligible and variable contributions from pelagic zooplankton. This inter- and intraspecific variability in trophic niche space likely contributes to the multi-level trophic complexity, functional diversity, and potentially food web resilience to ecosystem changes.

  相似文献   

11.
一生态位的研究是理论生态学的一个重要领域。Grinell(1917)将生态位定义为物种在环境中的最后分布单位,强调生态位的空间概念(space niche);Elton(1927)特别强调物种与其他种的营养关系(trophic relationship),并把生态位定义为物种在生物群落中的  相似文献   

12.
2015年4至12月,以玉龙鼠疫疫源地的核心区域文笔山为样区,在2 400 m以上海拔区间划分4个垂直生态带,采用夹夜法进行四个季节的小型兽类调查.根据生态位宽度指数(Bi)和生态位重叠指数(Cih)对该地区小型兽类垂直空间与季节生态位特征进行分析.调查共布鼠夹8 028次,捕获小型兽类1 583只,包括4目6科12属...  相似文献   

13.
Aim Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data. Location Europe, North America and South America. Methods The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with pre‐defined distributions and amounts of niche overlap to evaluate several ordination and species distribution modelling techniques for quantifying niche overlap. We illustrate the approach with data on two well‐studied invasive species. Results We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographical space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results. Main conclusions The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate for studying niche differences between species, subspecies or intra‐specific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intra‐specific lineage has changed over time.  相似文献   

14.
The distribution of niches in resource space and the niche patterns of a 14-species community of Middle Asian desert rodents were studied during two years - at low and high rodent density - using discriminant function analysis Nineteen quantitative environmental parameters (soil structure and vegetation), measured in 550 plots within 22 1 -ha grids, were considered The first three canonical axes of resource space account for 72% of the variance The first two axes represent complex environmental gradients the first axis represents a general landscape gradient from sand to clay soils, the second axis reflects a gradient of in creasing productivity The third axis reflects with in-habitat environmental variation All community parameters, as well as parameters of individual species niches, were unstable between years At the same time, different parameters vary in different extent Position of niche centroids along macro-habitat axes, as. well as macrohabitat niche breadth, were relatively stable between years, but these parameters for microhabitat axis and values of niche overlap were much more variable A strong correlation between changes m relative between-habitat niche breadth and differences in average niche overlap with relative changes in species abundances indicate density dependence of these parameters Changes in niche overlap is a consequence of between-year differences in guild patterns Guild structure was pronounced at high density when the level of niche overlap was intermediate At low density, when the level of niche overlap decreased, guild structure was incon-spicous Different levels of diversity differed in their sensitivity to density changes α-diversity was relatively constant as a result of between-year stability of niche centroid positions However level of ß-diversity varied significantly between years reflecting changes in the level of niche overlap, because a decrease in niche overlap leads to an increase in the rate of species turnover  相似文献   

15.
Ecological niche modeling has become an increasingly important tool to address issues in many fields of basic and applied ecology. The ecological niche space occupied across the geographic range, particularly for wide-ranging species, may vary for a variety of evolutionary and non-evolutionary reasons. However, ecological niche models are often applied over large geographic areas without regard for the potential effects of regional variation in adaptation, environmental conditions and their interactions, and species responses, thus significantly reducing their accuracy and utility. We develop regionally partitioned ecological niche models, using GARP, for the wide-ranging North American tree Gleditsia triacanthos (Fabaceae) . Models were constructed based on known tree occurrences at peripheral and range-centre locations, as well as across the geographic range as a whole.
Our results suggest that the niche space occupied by G. triacanthos varies regionally and that between some regions in particular there may be a complete absence of niche overlap. In particular, while there is some overlap between the niche space occupied by trees in the western and central regions of the range, there appears to be virtually no overlap in the niche space occupied by trees in the south of the range and that occupied by western and central trees. This lack of overlap appears to be driven primarily by regional differences in abiotic conditions, rather than regional adaptation per se. The results of our study have several important implications for the future development of habitat suitability models over large geographic areas. Spatial partitioning of data is clearly necessary to improve predictions of models where regional niche variation occurs. For wide-ranging species in particular, regional differences in ecological characteristics may cause apparent niche variation.  相似文献   

16.
Jrgen Ripa 《Oikos》2019,128(3):380-391
Explaining macroevolution from microevolution is a key issue in contemporary evolutionary theory. A recurrent macroevolutionary pattern is that some niche‐related traits consistently evolve slower than others, so called niche conservatism. Despite a growing amount of data, the underlying evolutionary processes are not fully understood. I here analyse adaptive radiations in an individual‐based eco‐evolutionary model. I find a coevolutionary mechanism – evolutionary niche monopolisation – as a possibly important generator of niche conservatism. A single lineage of a radiating clade can monopolise, and later diversify within, a substantial part of the available niche space – much larger than what can be explained by limiting similarity. This leads to niche conservatism, since no species evolves into or out of the monopolised region. The region can in this sense also be described as an adaptive zone. The model indicates that evolutionary niche monopolisation is operative in a large part of parameter space, underlining its possible importance. The mechanism is driven by competitive interactions and differences in niche widths in alternative niche dimensions. I discuss plausible examples of evolutionary niche monopolisation in well‐studied natural systems.  相似文献   

17.
We analyzed the role of niche usage flexibility (i.e. niche width) in promoting species coexistence in competitive communities in a one-dimensional niche space. We included two types of stochasticity, namely, a random sampling effect of community founding and environmental fluctuation. Fluctuation was further divided into two categories: niche-independent fluctuation (synchronized over the niche space) and niche-dependent fluctuation (variable among individual niche positions). In the analysis, two types of genetic and inheritance systems of individual niche position were considered, i.e. sexual reproduction with multiple loci and asexual reproduction with phenotypic plasticity. We found that niche usage flexibility promoted species diversity only under restricted situations when the environment was constant, but it generally promoted diversity when the environment fluctuated. In particular, under niche-independent fluctuation, niche usage flexibility significantly enhanced species diversity. In contrast, the analysis also predicted that when niche flexibility was constant, species diversity decreased with increasing environmental correlation between neighboring niches.  相似文献   

18.
Rates of climatic niche evolution vary widely across the tree of life and are strongly associated with rates of diversification among clades. However, why the climatic niche evolves more rapidly in some clades than others remains unclear. Variation in life history traits often plays a key role in determining the environmental conditions under which species can survive, and therefore, could impact the rate at which lineages can expand in available climatic niche space. Here, we explore the relationships among life-history variation, climatic niche breadth, and rates of climatic niche evolution. We reconstruct a phylogeny for the genus Desmognathus, an adaptive radiation of salamanders distributed across eastern North America, based on nuclear and mitochondrial genes. Using this phylogeny, we estimate rates of climatic niche evolution for species with long, short, and no aquatic larval stage. Rates of climatic niche evolution are unrelated to the mean climatic niche breadth of species with different life histories. Instead, we find that the evolution of a short larval period promotes greater exploration of climatic space, leading to increased rates of climatic niche evolution across species having this trait. We propose that morphological and physiological differences associated with variation in larval stage length underlie the heterogeneous ability of lineages to explore climatic niche space. Rapid rates of climatic niche evolution among species with short larval periods were an important dimension of the clade's adaptive radiation and likely contributed to the rapid rate of lineage accumulation following the evolution of an aquatic life history in this clade. Our results show how variation in a key life-history trait can constrain or promote divergence of the climatic niche, leading to variation in rates of climatic niche evolution among species.  相似文献   

19.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

20.
The distribution of niches in resource space and the niche patterns of a 13 species community of Middle Asian desert rodents were studied by use of discriminant function analysis Nineteen quantitative parameters of the environment (soil structure and vegetation), measured at 600 sample plots within twenty four one ha grids, were considered The first three canonical axes of resource space account for 83% of the variance, the first axis represents a general landscape gradient from sand to clay soils, the second axis reflects a gradient of increasing productivity, and the third axis reflects a gradient of increasing protectability of the environment The distribution of niches in resource space is not even, there are two distinct spatial guilds consisting of psammophilous and sclerophilous species There is a negative correlation between niche position (distance from species centroid to the center of the resource space) and maximal population biomass At the same time there are no correlations between the niche breadth and the niche position due to the absence of species with really broad niches Rodent biomass increases along the productivity axis and reaches a peak in the middle part of the substrate axis Rodent species diversity increases along the substrate axis from sand to clay soils Changes of species diversity along productivity axis have humpshaped patterns Maximum species diversity was recorded at low level of productivity on the sandy soils and shifted to intermediate levels of productivity on sandy-loam and clay soils  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号