首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current research in cryosurgery is concerned with finding a thermal history that will definitively destroy tissue. In this study, we measured and predicted the thermal history obtained during freezing and thawing in a cryosurgical model. This thermal history was then compared to the injury observed in the tissue of the same cryosurgical model (reported in companion paper (Hoffmann and Bischof, 2001)). The dorsal skin flap chamber, implanted in the Copenhagen rat, was chosen as the cryosurgical model. Cryosurgery was performed in the chamber on either normal skin or tumor tissue propagatedfrom an AT-1 Dunning rat prostate tumor. The freezing was performed by placing a approximately 1 mm diameter liquid-nitrogen-cooled cryoprobe in the center of the chamber and activating it for approximately 1 minute, followed by a passive thaw. This created a 4.2 mm radius iceball. Thermocouples were placed in the tissue around the probe at three locations (r = 2, 3, and 3.8 mm from the center of the window) in order to monitor the thermal history produced in the tissue. The conduction error introduced by the presence of the thermocouples was investigated using an in vitro simulation of the in vivo case and found to be <10 degrees C for all cases. The corrected temperature measurements were used to investigate the validity of two models of freezing behavior within the iceball. The first model used to approximate the freezing and thawing behavior within the DSFC was a two-dimensional transient axisymmetric numerical solution using an enthalpy method and incorporating heating due to blood flow. The second model was a one-dimensional radial steady state analytical solution without blood flow. The models used constant thermal properties for the unfrozen region, and temperature-dependent thermal properties for the frozen region. The two-dimensional transient model presented here is one of the first attempts to model both the freezing and thawing of cryosurgery. The ability of the model to calculate freezing appeared to be superior to the ability to calculate thawing. After demonstrating that the two-dimensional model sufficiently captured the freezing and thawing parameters recorded by the thermocouples, it was used to estimate the thermal history throughout the iceball. This model was used as a basis to compare thermal history to injury assessment (reported in companion paper (Hoffmann and Bischof, 2001)).  相似文献   

2.
Cryosurgery is increasingly being used to treat prostate cancer; however, a major limitation is local recurrence of disease within the previously frozen tissue. We have recently demonstrated that tumor necrosis factor alpha (TNF-α), given 4h prior to cryosurgery can yield complete destruction of prostate cancer within a cryosurgical iceball. The present work continues the investigation of the cellular and molecular mechanisms and dynamics of TNF-α enhancement on cryosurgery. In vivo prostate tumor (LNCaP Pro 5) was grown in a dorsal skin fold chamber (DSFC) on a male nude mouse. Intravital imaging, thermography, and post-sacrifice histology and immunohistochemistry were used to assess iceball location and the ensuing biological effects after cryosurgery with and without TNF-α pre-treatment. Destruction was specifically measured by vascular stasis and by the size of histologic zones of injury (i.e., inflammatory infiltrate and necrosis). TNF-α induced vascular pre-conditioning events that peaked at 4h and diminished over several days. Early events (4-24 h) include upregulation of inflammatory markers (nuclear factor-κB (NFκB) and vascular cell adhesion molecule-1 (VCAM)) and caspase activity in the tumor prior to cryosurgery. TNF-α pre-conditioning resulted in recruitment of an augmented inflammatory infiltrate at day 3 post treatment vs. cryosurgery alone. Finally, pre-conditioning yielded enhanced cryosurgical destruction up to the iceball edge at days 1 and 3 vs. cryosurgery alone. Thus, TNF-α pre-conditioning enhances cryosurgical lesions by vascular mechanisms that lead to tumor cell injury via promotion of inflammation and leukocyte (esp. neutrophil) recruitment.  相似文献   

3.
《Cryobiology》2011,62(3):280-288
Cryosurgery is increasingly being used to treat prostate cancer; however, a major limitation is local recurrence of disease within the previously frozen tissue. We have recently demonstrated that tumor necrosis factor alpha (TNF-α), given 4 h prior to cryosurgery can yield complete destruction of prostate cancer within a cryosurgical iceball. The present work continues the investigation of the cellular and molecular mechanisms and dynamics of TNF-α enhancement on cryosurgery. In vivo prostate tumor (LNCaP Pro 5) was grown in a dorsal skin fold chamber (DSFC) on a male nude mouse. Intravital imaging, thermography, and post-sacrifice histology and immunohistochemistry were used to assess iceball location and the ensuing biological effects after cryosurgery with and without TNF-α pre-treatment. Destruction was specifically measured by vascular stasis and by the size of histologic zones of injury (i.e., inflammatory infiltrate and necrosis). TNF-α induced vascular pre-conditioning events that peaked at 4 h and diminished over several days. Early events (4–24 h) include upregulation of inflammatory markers (nuclear factor-κB (NFκB) and vascular cell adhesion molecule-1 (VCAM)) and caspase activity in the tumor prior to cryosurgery. TNF-α pre-conditioning resulted in recruitment of an augmented inflammatory infiltrate at day 3 post treatment vs. cryosurgery alone. Finally, pre-conditioning yielded enhanced cryosurgical destruction up to the iceball edge at days 1 and 3 vs. cryosurgery alone. Thus, TNF-α pre-conditioning enhances cryosurgical lesions by vascular mechanisms that lead to tumor cell injury via promotion of inflammation and leukocyte (esp. neutrophil) recruitment.  相似文献   

4.
Chao BH  He X  Bischof JC 《Cryobiology》2004,49(1):10-27
Vascular injury is a major mechanism of cryosurgical destruction. The extent of vascular injury may be affected by the addition of molecular adjuvants. This study, in addition to determining the injury mechanism in the LNCaP Pro 5 human prostate cancer subline grown in a nude mouse, examined the effect of cytokine TNF-alpha on cryosurgery of an in vivo microvascular preparation (Dorsal Skin Flap Chamber). A comparison of injury data to a thermal model indicated that the minimum temperature after moderate cooling, thawing, and hold time required for causing necrosis was 3.5+/-6.9 degrees C in TNF-alpha-treated LNCaP Pro 5 tumor tissue (n=4) and -9.8+/-5.8 degrees C in TNF-alpha-treated normal skin of the nude mouse (n=4). Compared to tissues without TNF-alpha treatment, where the minimum temperature required for causing necrosis was -16.5+/-4.3 degrees C in LNCaP Pro 5 tumor tissue (n=8) and -24.4+/-7.0 degrees C in normal skin of the nude mouse (n=9), the results indicate the local use of TNF-alpha can dramatically increase the threshold temperature of cryo-destruction by more than 10 degrees C (p <0.01). These findings were consistent with the hypothesis that vascular-mediated injury is responsible for defining the edge of the cryolesion in microvascular-perfused tissue, and therefore pre-induced inflammation can augment cryoinjury. The local use of TNF-alpha to pre-inflame prostate cancer promises to increase both the ability of freezing to destroy cancer as well as improve the ability of ultrasound or other iceball-monitoring techniques to predict the outcome of the treatment.  相似文献   

5.
Effect of varying freezing and thawing rates in experimental cryosurgery   总被引:5,自引:0,他引:5  
Six different freezing/thawing programs, which varied freezing rate, duration of freezing, and thawing rates, were used to investigate the effect of these factors on cell destruction in dog skin. The range of tissue temperatures produced was from -15 to -50 degrees C. The extent of destruction was evaluated by skin biopsies 3 days after cold injury. In single, short freezing/thawing cycles, the temperature reached in the tissue was the prime factor in cell death. Longer freezing time and slow thawing were also important lethal factors which increased destruction of cells. Cooling rate, whether slow or fast, made little difference in the outcome. The experiments suggested that present-day, commonly employed cryosurgical techniques, which feature fast cooling, slow thawing, and repetition of the freeze/thaw cycle, should be modified by the use of maintenance of the tissue in the frozen state for several minutes and slow thawing. Thawing should be complete before freezing is repeated. These modifications in technique will maximize tissue destruction, an important consideration in cancer cryosurgery.  相似文献   

6.
Andrew A. Gage 《Cryobiology》1978,15(4):415-425
In experiments using cryosurgical apparatus to freeze the canine palate in situ, observations were made on techniques of producing tissue destruction. Several time-temperature schedules of freezing were studied. The results showed the great tolerance of palatal tissues to extremely low temperatures for short time periods. Melanocytes were extraordinarily sensitive to cold injury. Tissue necrosis increased with duration of freezing, but repeated freezing was lethal and obviously critical for successful cryosurgical destruction. Thermocouples must be used in clinical cryosurgery to insure that lethal tissue temperatures (colder than ?50 °C) are attained. The incidence of sequestration in the canine palate showed the need for use of proper technique and suitable precautions in the cryosurgical treatment of human palatal tumors.  相似文献   

7.
The aim of cryosurgery is to kill cells within a closely defined region maintained at a predetermined low temperature. To effectively kill cells, it is important to be able to predict and control the cooling rate over some critical range of temperatures and freezing states in order to regulate the spatial extent of injury during any freeze-thaw protocol. The objective of manipulating the freezing parameters is to maximize the destruction of cancer cells within a defined spatial domain while minimizing cryoinjury to the surrounding healthy tissue. An analytical model has been developed to study the rate of cell destruction within a liver tumor undergoing a freeze-thaw cryosurgical process. Temperature transients in the tumor undergoing cryosurgery have been quantitatively investigated. The simulation is based on solving the transient bioheat equation using the finite volume scheme for a single or multiple-probe geometry. Simulated results show good agreement with experimental data obtained from in vivo clinical study. The calibrated model has been employed to study the effects of different freezing rates, freeze-thaw cycle(s), and multi-probe freezing on cell damage in a liver tumor. The effectiveness of each treatment protocol is estimated by generating the cell survival-volume signature and comparing the percentage of cell damaged within the ice-ball. Results from the model show that employing freeze-thaw cycles has the potential to enhance cell destruction within the cancerous tissue. Results from this study provide the basis for designing an optimized cryosurgical protocol which incorporates thermal effects and the extent of cell destruction within tumors.  相似文献   

8.
This study examined the potential for "cryoimmunology" to increase the destruction of the Dunning AT-1 prostate tumor after cryosurgery. Two possible mechanisms explaining the cryoimmunologic response were studied. The first was that an antitumor antibody is produced after cryosurgery. The second was that freezing induces an immunostimulatory signal that creates a T-cell response to the tumor. Six groups of animals (three experimental groups and three control groups) were treated once per week for 4 weeks with different therapies designed to investigate these mechanisms. Three types of immune response were measured: (1) the anti-AT-1 tumor immune titer (Ab response) by serum ELISA, (2) the effect on secondary tumor growth after challenge with live AT-1 cells (size and weight of the secondary tumor over time), and (3) the nature of the immunologic infiltrate into the secondary tumors by immunoperoxidase stain. ELISA showed that immune titers were present in the experimental groups after therapy, but the presence of an immune titer did not have a significant effect on tumor propagation. Histology showed the immunologic infiltrate was similar in all groups. These results showed that an immune response to AT-1 tumor was measurable by serum antibody, but it did not significantly limit secondary tumor growth or affect tumor histology. This suggests that the growth of AT-1 tumors is not inhibited by a cryoimmunological response. Thus, the effect of in vivo cryosurgery in the AT-1 tumor system would likely be limited to cellular and vascular changes.  相似文献   

9.
Flounder antifreeze peptides increase the efficacy of cryosurgery   总被引:4,自引:0,他引:4  
Type I antifreeze protein (AFP) from the winter flounder (Pseudopleuronectes americanus) was used as an adjuvant to cryosurgery of subcutaneous tumors of Dunning AT-1 rat prostate cells grown in Copenhagen rats. The cryosurgical procedure was performed with a commercially available cryosurgery device (CRYO-HIT, Galil Medical) with clinically relevant single- and double-freeze protocols. Injury was assessed with the alamar blue indicator of metabolic activity. The assay gave anomalous results when used to assess the extent of injury immediately following the procedure, underestimating the extent of injury. However, a double-freeze procedure with antifreeze protein present was found to give significantly better ablation than a double-freeze without AFP or a single-freeze with or without AFP.  相似文献   

10.
Experiments comparing conventional operative treatment and cryosurgery of a murine osteosarcoma showed that local tumor destruction by freezing in situ was similar or superior to amputation concerning survival and formation of metastasis, depending on tumor stage. Limited local resection was less effective. Immune functions affected by cryosurgical tumor destruction included depression of natural killer cell activity and decrease of tumor-specific autologous IgG antibodies in the serum.  相似文献   

11.
S M Burge  R P Dawber 《Cryobiology》1990,27(2):153-163
We have investigated the histological changes in hair follicles in guinea pig skin after standardized moderate and severe cryosurgery injuries. Hair follicles were permanently destroyed by cryosurgery, but more than one mechanism may be operative during follicle destruction and shedding. The mechanism depends upon the severity of the freeze. After a light freeze injury, the changes are predominantly within the hair follicle. The hair is shed at the surface and there is selective autolysis of follicular cells, but dermal connective tissue is preserved and there is little surrounding damage. However, after a severe cryoinjury as used in "tumor doses," there is destruction of dermal connective tissue and dermal scarring. The necrotic dermis is shed, taking with it the dead follicles and morphologically normal elastic tissue.  相似文献   

12.
The goal of this study was to estimate the three-dimensional (3D) temperature distribution in liver cryolesions and assess the margin of the transition zone between the tumoricidal core of the lesion and the surrounding unfrozen tissue, using criteria proposed in the literature. Local recurrences after liver tumor cryoablation are frequent. Temperatures below -40 degrees C and a 1-cm zone of normal tissue included in the cryolesion are considered necessary for adequate ablation. The 3D temperature distribution in 10 pig cryolesions was estimated by numerical solution of a simplified bioheat equation using magnetic resonance imaging data to establish cryolesion border conditions. Volumes encompassed by the -20, -40, and -60 degrees C isotherms were estimated. The shortest distance from every voxel on the -40 degrees C isotherm to the cryolesion edge was calculated and the mean and the maximal of these distances were defined for each cryolesion. Median cryolesion volumes with temperatures of -20, -40, and -60 degrees C or colder were 53, 26, and 14% of the total cryolesion volume, respectively. The median cryolesion volume was 12.3 cm(3). The median of the mean distances calculated between the -40 degrees C isotherm and the cryolesion edge was 4.1 mm and increased with increasing cryolesion volume. The median of the largest of these distances calculated for each cryolesion was 8.1 mm. Temperatures claimed to be adequate for tumor destruction were obtained only in parts of the cryolesion. The adequacy of a 1-cm zone of normal liver tissue included in the cryolesion to ensure tumor ablation is questioned.  相似文献   

13.
Three rabbits were treated with cryosurgery on the lateral surface of the mandible. Osteocytes with normal appearance were not detected in the cortex after 2 or 7 days following cryosurgery. In the marrow cavity, cells appeared more resistant and often showed a normal morphology as studied with both light and electron microscopy. The reason why cells survived in the marrow cavity is probably due to a combination of sheltering bone and the near proximity to an intact circulation due to a patent alveolar artery.The uncertain extension of the cold front beyond the cortex may indicate that cryosurgery alone is not suitable if a tumor has invaded the marrow cavity, while more superficially located tumors can be eradicated. However, tumor invasion itself destroys the cortex and thus the marrow cavity will be more readily exposed to the more extensive cryosurgical techniques used in clinical cryosurgery.  相似文献   

14.
Cryosurgery of pulmonary metastases.   总被引:2,自引:0,他引:2  
Indications and results of 33 cryosurgical interventions for metastatic tumors in the lung are presented. Regression of local and metastatic pulmonary growth on the contralateral side was observed in four cases. Nine cases showed temporary halt of metastatic pulmonary tumor growth. The technique of cryosurgery for pulmonary metastases is reviewed. The procedure of cryosurgery of pulmonary metastases was found to be an innocuous method to attempt both tumor destruction and eventually specific immunologic stimulation. Preliminary observations with the lymphocytes and sera indicate that cryosurgery of pulmonary metastases induces an increase in specific cell mediated immune response without producing blocking serum factors and may give rise to specific, complement dependent cytotoxic antibodies. In one case both mechanisms were observed after cryotherapy. In three cases with progressive disease, lymphocyte mediated cytotoxicity alone was stimulated.  相似文献   

15.
Resistance to tumor challenge following surgical and cryosurgical eradication of the tumor was studied, using an experimental mammary tumor of the rat, MRMT-1. It was revealed that rejection rate of the challenged tumor increased gradually following cryosurgery and reached its peak at 10 weeks after cryosurgery. No such phenomenon was observed after surgical excision of the tumor. Decreased incidence of lymph node metastases and decreased tumor weights in “take” cases also suggested an increased immunological activity against the tumor at 10 weeks after cryosurgery.  相似文献   

16.
Basic studies of cryochemotherapy in a murine tumor system   总被引:2,自引:1,他引:1  
The combined effect of cryosurgery and anticancer drugs (cryochemotherapy) was studied in an experimental B16 melanoma/BDF1 tumor system. Vascular volume and vascular permeability after cryosurgery of normal skin and the tumor were measured by using 51Cr-labeled red blood cells and 125I-labeled serum albumin. The vascular volume and vascular permeability of both the normal vessels and the tumor vessels greatly increased immediately after cryosurgery, and their vascular volume decreased to less than the normal level within a few hours. However, the tumor vessels showed less dilatation and increase in permeability than the vessels of normal tissue. There was a difference in functional characteristics in response to cryoinjury between the normal vessels and the tumor vessels. The anticancer drugs, peplomycin and adriamycin, were administered intraperitoneally in combination with cryosurgery. When peplomycin was administered 5 min, 1 hr, and 3 hr after cryosurgery, the drug concentration in the frozen tumor was higher than that in the untreated tumor. But when administered 1 hr before cryosurgery, peplomycin was not trapped in the tumor. Trapping of adriamycin was not observed after the same treatment. In cryochemotherapy, it is necessary to administer the appropriate drug at the appropriate time. However, the trapping of the anticancer drug results in a high concentration and lasts for a long time, so that cryochemotherapy is expected to be a new mode of cancer therapy, particularly as a multidisciplinary treatment for cancer.  相似文献   

17.
Daniels CS  Rubinsky B 《PloS one》2011,6(11):e26219
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.  相似文献   

18.
Lipid and protein changes due to freezing in Dunning AT-1 cells   总被引:5,自引:0,他引:5  
Defining the process of cellular injury during freezing, at the molecular level, is important for cryosurgical applications. This work shows changes to both membrane lipids and protein structures within AT-1 Dunning prostate tumor cells after a freezing stress which induced extreme injury and cell death. Cells were frozen in an uncontrolled fashion to -20 or -80 degrees C. Freezing resulted in an increase in the gel to liquid crystalline phase transition temperature (T(m)) of the cellular membranes and an increase in the temperature range over which the transition occurred, as determined by Fourier transform infrared spectroscopy (FTIR). Thin layer chromatography (TLC) analysis of total lipid extracts showed free fatty acids (FFA) in the frozen samples, indicating a change in the lipid composition. The final freezing temperature had no effect on the thermotropic response of the membranes or on the FFA content of the lipid fraction. The overall protein secondary structure as determined by FTIR showed only slight changes after freezing to -20 degrees C, in contrast to a strong and apparently irreversible denaturation after freezing to -80 degrees C. Taken together, these results suggest that the decrease in viability between control and frozen cells can be correlated with small changes in the membrane lipid composition and membrane fluidity. In addition, loss of cell viability is associated with massive protein denaturation as observed in cells frozen to -80 degrees C, which was not observed in samples frozen to -20 degrees C.  相似文献   

19.
Pigmented areas of canine skin and oral mucosa were subjected to freezing in situ at various temperatures for the purpose of investigating possible differences in the sensitivity of epidermal cells to cold injury. Destruction of melanocytes occurred in the range of ?4 to ?7 °C, while squamous cells resisted injury even at ?20 °C. Replacement of the lost pigmented cells occurred from the normal tissue at the periphery of the injured area. The experiments suggest that selective destruction of pigmented lesions in clinical conditions may be achieved by freezing tissue to ?4 to ?7 °C or colder, but not to exceed ?20 °C in order to avoid destruction of squamous cells. The experiments also support wider use of cryosurgery for pigmented lesions of the skin and oral cavity.  相似文献   

20.
To investigate the minimal lethal freezing temperature required to produce skin necrosis in dogs, multiple skin sites were frozen with cryosurgical equipment. Tissue temperatures were recorded from thermocouple sites placed at diverse distances, usually 5 mm from the edge of the freezing probe. In single freezing cycles of about 3 min duration, tissue temperatures in the range of 0 to ?60 °C were produced. Punch biopsies of the skin at the thermocouple sites 3 days after freezing injury provided tissues for estimation of viability by histologic examination.The histologic findings permitted classification of the biopsy tissue into three groups, that is, viable, borderline, or necrotic. When classified as borderline, the division between the necrotic and viable tissue was evident on the histologic slide. The viable specimens were scattered through the 0 to ?35 °C range. All specimens frozen to ?10 °C or warmer were viable. In biopsies classified as borderline, the range of viability extended from ?11 ° to ?50 °C. The necrotic biopsies covered a range of ?14 ° to ?50 °C. Cell death was certain at temperatures colder than ?50 °C. The data showed cryosurgical freezing conditions produced a range of temperatures in which viability or death of tissue may occur and that the ranges of viability and necrosis overlapped to a great extent.The wide range of temperatures at which cells were viable shows the need to achieve tissue temperatures in the range of ?50 °C in the cryosurgical treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号