首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The big brown bat, Eptesicus fuscus, can perceive small changes in the delay of FM sonar echoes and shifts in echo phase, which interact with delay. Using spectral cues caused by interference, Eptesicus also can perceive the individual delays of two overlapping FM echoes at small delay separations. These results have been criticized as due to spectral artifacts caused by overlap between stimulus echoes and extraneous sounds (Pollak 1993). However, no amplitude or spectral variations larger than 0.05 dB accompany delay or phase changes produced by the electronic apparatus. No reverberation falls in the narrow span of delays required to produce the bat's performance curve from echo interference cues. Consistent differences in the durations of sonar sounds for 6 bats that perform the same in the experiments demonstrate that overlap between stimulus echoes and extraneous echoes is not necessary, and changes in the amount of echo overlap have no effect on performance. Noise-induced random variations in echo spectra outweigh putative spectral artifacts, and deliberately-introduced spectral artifacts do not improve performance overall but instead yield new time-frequency images. Amplitude-latency trading of perceived delay, proposed as a demonstration that the latency of neural discharges encodes delay (Pollak et al. 1977), confirms that the bat's fine delay and phase perception depends on a temporal neural code. The perceived delays depend on stimulus delays, not the delays of extraneous sounds. The rejected criticisms are based on physiological results with random-phase FM stimuli which are irrelevant to neural coding of fine echo delay and phase.The contents of this paper first appeared in October 1990 in a letter to G.D. Pollak in response to his unpublished criticisms of echo-jitter experiments. These responses also have been presented at the 1991 and 1992 Association for Research in Otolaryngology midwinter meetings and at the 1992 3rd International Congress of Neuroethology. Several of the control experiments also appeared in Simmons et al. (1990b). The now-published criticisms (Pollak 1993, the preceding paper) have not addressed these responses, including the prior published data demonstrating that the stimulus conditions asserted by these criticisms do not in fact occur.  相似文献   

5.
Utilizing a three-ramp platform, we studied the detection of a revolving and a stationary target in the presence of background clutter by trained Eptesicus fuscus. During the test, the mean amplitude of echo from either target was always larger than that of the background echoes at the bat-to-target distance of 30, 70 and 100 cm. The amplitude of the echo reflected back from a revolving target was modulated between a maximum and a minimum value. An electric motor was used to revolve a target. The frequency contents of the motor noise were mostly below 1 kHz. While the total percent response of approaching either target is always more than 90% at every bat-to-target distance tested, the bats approach a revolving target more frequently than a stationary one. Echolocation pulses emitted by the bats during the test were recorded and analyzed. The bats shortened their pulse durations and interpulse intervals and lowered the frequency contents as they entered into the crawling phase from the searching phase. Potential interference of background echoes and ambient noise with the performance of the bats is discussed. The preference of a revolving target to a stationary one by the bats is perhaps due to the fact that a revolving target has a higher releasing value than a stationary one does.  相似文献   

6.
Retinal connections were studied in Eptesicus fuscus and Artibeus jamaicensis using anterograde axonal degeneration and autoradiographic techniques following unilateral enucleations and uniocular injections of radioactive amino acids. Although each retina projected bilaterally to the brainstem, the number of silver grains in the emulsion of autoradiographs indicated that nearly all fibers in the optic nerve entered the contralateral optic tract. Ipsilaterally, a major portion of the projection ended in the suprachiasmatic nucleus; caudal to the suprachiasmatic nucleus, the amount of label was so small that individual silver grains were counted to determine the location and quantity of label in other ipsilateral nuclei. In both species the retinal projection terminated bilaterally in the suprachiasmatic, dorsal lateral geniculate, ventral lateral geniculate, and pretectal olivary nuclei and contralaterally in the posterior pretectal nucleus, superficial gray layers of the superior colliculus, and nuclei of the accessory optic system. In Eptesicus the projection to the nucleus of the optic tract ended contralaterally, and in Artibeus it ended in this nucleus bilaterally. The results of this study revealed a basic theme in the optic projection of the two ecologically different microchiropterans. The results differed, however, in that the projection was larger and visually related nuclei were better developed in Artibeus. Such variations are presumed to relate to eye size and the relative use of vision by the two chiropterans.  相似文献   

7.
8.
采用“双选”的心理物理学方法 ,研究了训练后的大棕蝠 (Eptesicusfuscus)在背景干扰的条件下探测半圆形目标的能力。半圆形目标系以静止、旋转、摆动或不同组合的旋转与摆动呈现于蝙蝠。在测试室 ,蝙蝠-目标间距从 3 0cm开始 ,依次递增 10cm直至 110cm为止。当蝙蝠 -目标间距小于 80cm时 ,目标回声的强度总是大于背景干扰声。由旋转目标反射的回声强度则依正弦波调制。结果发现 :蝙蝠对目标的正确探测率随蝙蝠 -目标间距的增加而降低 ;在每一特定间距 ,对移动目标的正确探测率均高于对静止目标的正确探测率  相似文献   

9.
An echolocating bat actively controls the spatial acoustic information that drives its behavior by directing its head and ears and by modulating the spectro-temporal structure of its outgoing sonar emissions. The superior colliculus may function in the coordination of these orienting components of the bat's echolocation system. To test this hypothesis, chemical and electrical microstimulation experiments were carried out in the superior colliculus of the echolocating bat, Eptesicus fuscus, a species that uses frequency modulated sonar signals. Microstimulation elicited pinna and head movements, similar to those reported in other vertebrate species, and the direction of the evoked behaviors corresponded to the site of stimulation, yielding a map of orienting movements in the superior colliculus. Microstimulation of the bat superior colliculus also elicited sonar vocalizations, a motor behavior specific to the bat's acoustic orientation by echolocation. Electrical stimulation of the adjacent periaqueductal gray, shown to be involved in vocal production in other mammalian species, elicited vocal signals resembling acoustic communication calls of E. fuscus. The control of vocal signals in the bat is an integral part of its acoustic orienting system, and our findings suggest that the superior colliculus supports diverse and species-relevant sensorimotor behaviors, including those used for echolocation.  相似文献   

10.
1.  Echolocating bats (Eptesicus fuscus) were trained to discriminate between simulated targets consisting of one or two echo-wavefronts with internal time delays of up to 100 s. Spectral and temporal properties and total signal energy of the targets were evaluated and predictions for performances of bats derived from receiver models were compared with measured performances.
2.  Eptesicus fuscus was able to discriminate a one-wavefront target from two-wavefront targets with distinct internal time delays (12 s, 32–40 s and 52–100 s). Performance was not affected by changes in total signal energy. Bats also successfully discriminated between two-wavefront targets with different internal time delays.
3.  Performance predicted from differences in total energy between targets did not match the measured performance, indicating that bats did not rely on total echo energy. This finding is also supported by the behavioral data. Performance predicted from spectral and temporal receiver models both matched the measured performance and, therefore, neither one of these models can be favored over the other.
4.  The behavioral data suggest that Eptesicus fuscus did not transform echo information into estimates of target range separation and, therefore, did not perceive the two wavefronts of each simulated two-wavefront echo as two separate targets.
  相似文献   

11.
12.
13.
1. Encoding of temporal stimulus parameters by inferior collicular (IC) neurons of Eptesicus fuscus was studied by recording their responses to a wide range of repetition rates (RRs) and durations at several stimulus intensities under free field stimulus conditions. 2. The response properties of 424 IC neurons recorded were similar to those reported in previous studies of this species. 3. IC neurons were classified as low-pass, band-pass, and high-pass according to their preference for RRs and/or durations characteristic of, respectively, search, approach, or terminal phases of echolocation. These neurons selectively process stimuli characteristic of the various phases of hunting. 4. Best RRs and best durations were not correlated with either the BFs or recording depths This suggests that each isofrequency lamina is capable of processing RRs and durations of all hunting phases. 5. Responses of one half of IC neurons studied were correlated with the stimulus duty cycle. These neurons may preferentially process terminal phase information when the bat's pulse emission duty cycle increases. 6. While the stimulus RR affected the dynamic range and overall profile of the intensity rate function, only little effect was observed with different stimulus durations.  相似文献   

14.
This study examines the binaural and frequency representation in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus, by using an ear-phone stimulation system. All 306 cortical neurons studied were excited by contralateral sound stimulation but they were either excited, inhibited or not affected by ipsilateral sound stimulation. These cortical neurons were columnarly organized according to their binaural and frequency-tuning properties. The excitation-excitation columns which occupy about 15% of the AC are mainly aggregated within an oval-shaped area of the central AC. The excitation-inhibition neurons and binaural neurons with mixed properties are distributed in the remaining 85% of the surrounding primary AC. Although the best frequency (BF) of these neurons shows a tendency to decrease from high to low along the anteroposterior axis of the primary AC, systematic variation in BF is not always consistent across the entire mapping area. In particular, BFs of cortical neurons isolated in the anterior AC vary quite unsystematically such that neurons with similar BFs are aggregated in isolated patches. Isofrequency and binaural columns are segregated into bands that intersect each other. Accepted: 13 August 1997  相似文献   

15.
Summary Two big brown bats (Eptesicus fuscus) were trained to report the presence or absence of a virtual sonar target. The bats' sensitivity to transient masking was investigated by adding 5 ms pulses of white noise delayed from 0 to 16 ms relative to the target echo. When signal and masker occurred simultaneously, the bats required a signal energy to noise spectrum level ratio of 35 dB for 50% probability of detection. When the masker was delayed by 2 ms or more there was no significant masking and echo energy could be reduced by 30 dB for the same probability of detection. The average duration of the most energetic sonar signal of each trial was measured to be 1.7 ms and 2.4 ms for the two bats, but a simple relation between detection performance and pulse duration was not found.In a different experiment the masking noise pulses coincided with the echo, and the duration of the masker was varied from 2 to 37.5 ms. The duration of the masker had little or no effect on the probability of detection.The findings are consistent with an aural integration time constant of about 2 ms, which is comparable to the duration of the cries. This is an order of magnitude less than found in backward masking experiments with humans and may be an adaptation to the special constraints of echolocation. The short time of sensitivity to masking may indicate that the broad band clicks of arctiid moths produced as a countermeasure to bat predation are unlikely to function by masking the echo of the moth.Abbreviations SPL sound pressure level - SD standard deviation - SE standard error - BW bandwidth  相似文献   

16.
17.
To determine the level at which certain response characteristics originate, we compared monaural auditory responses of neurons in ventral cochlear nucleus, nuclei of lateral lemniscus and inferior colliculus. Characteristics examined were sharpness of frequency tuning, latency variability for individual neurons and range of latencies across neurons.Exceptionally broad tuning curves were found in the nuclei of the lateral lemniscus, while exceptionally narrow tuning curves were found in the inferior colliculus. Neither specialized tuning characteristic was found in the ventral cochlear nuclei.All neurons in the columnar division of the ventral nucleus of the lateral lemniscus maintained low variability of latency over a broad range of stimulus conditions. Some neurons in the cochlear nucleus (12%) and some in the inferior colliculus (15%) had low variability in latency but only at best frequency.Range of latencies across neurons was small in the ventral cochlear nucleus (1.3–5.7 ms), intermediate in the nuclei of the lateral lemniscus (1.7–19.8 ms) and greatest in the inferior colliculus (2.9–42.0 ms).We conclude that, in the nuclei of the lateral lemniscus and in the inferior colliculus, unique tuning and timing properties are built up from ascending inputs.Abbreviations AVCN anteroventral cochlear nucleus - BF best frequency - CV coefficient of variation - DCN dorsal cochlear nucleus - FM frequency modulation - IC inferior colliculus - NLL nuclei of lateral lemniscus - PSTH post stimulus time histogram - PVCN posteroventral cochlear nucleus - SD standard deviation - SPL sound pressure level - VCN ventral cochlear nuclei - VNLLc ventral nucleus of the lateral lemniscus, columnar division  相似文献   

18.
Heart, liver, pectoralis major, and plasma of hibernating, arousing and aroused bats were studied. The activities of four mitochondrial enzymes and three morphometric parameters of mitochondria did not change in the heart. Mitochondrial enzyme activities in the liver and pectoralis major did not change. Lactate dehydrogenase activity and isoenzyme content in heart, liver and pectoralis major did not change. Heart lipid content determined morphometrically decreased transiently after 30 min arousal from hibernation. Plasma free fatty acid concentration increased significantly by 7.5 min and peaked at 15 min after arousal from hibernation. Concentrations of heart free fatty acids, triglycerides, glycerol, and cholesterol and liver triglycerides did not change.  相似文献   

19.
1. FM echolocating bats (Eptesicus fuscus) were trained to discriminate between a two-component complex target and a one-component simple target simulated by electronically-returned echoes in a series of experiments that explore the composition of the image of the two-component target. In Experiment I, echoes for each target were presented sequentially, and the bats had to compare a stored image of one target with that of the other. The bats made errors when the range of the simple target corresponded to the range of either glint in the complex target, indicating that some trace of the parts of one image interfered with perception of the other image. In Experiment II, echoes were presented simultaneously as well as sequentially, permitting direct masking of echoes from one target to the other. Changes in echo amplitude produced shifts in apparent range whose pattern depended upon the mode of echo presentation. 2. Eptesicus perceives images of complex sonar targets that explicitly represent the location and spacing of discrete glints located at different ranges. The bat perceives the target's structure in terms of its range profile along a psychological range axis using a combination of echo delay and echo spectral representations that together resemble a spectrogram of the FM echoes. The image itself is expressed entirely along a range scale that is defined with reference to echo delay. Spectral information contributes to the image by providing estimates of the range separation of glints, but it is transformed into these estimates. 3. Perceived absolute range is encoded by the timing of neural discharges and is vulnerable to shifts caused by neural amplitude-latency trading, which was estimated at 13 to 18 microseconds per dB from N1 and N4 auditory evoked potentials in Eptesicus. Spectral cues representing the separation of glints within the target are transformed into estimates of delay separations before being incorporated into the image. However, because they are encoded by neural frequency tuning rather than the time-of-occurrence of neural discharges, the perceived range separation of glints in images is not vulnerable to amplitude-latency shifts. 4. The bat perceives an image that is displayed in the domain of time or range. The image receives no evident spectral contribution beyond what is transformed into delay estimates. Although the initial auditory representation of FM echoes is spectrogram-like, the time, frequency, and amplitude dimensions of the spectrogram appear to be compressed into an image that has only time and amplitude dimensions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
1. Behavioral experiments with jittering echoes examined acoustic images of sonar targets in the echolocating bat, Eptesicus fuscus, along the echo delay or target range axis. Echo phase, amplitude, bandwidth, and signal-to-noise ratio were manipulated to assess the underlying auditory processes for image formation. 2. Fine delay acuity is about 10 ns. Calibration and control procedures indicate that this represents temporal acuity rather than spectral discrimination. Jitter discrimination curves change in phase when the phase of one jittering echo is shifted by 180 degrees relative to the other, showing that echo phase is involved in delay estimation. At an echo detectability index of about 36 dB, fine acuity is 40 ns, which is approximately as predicted for the delay accuracy of an ideal receiver. 3. Compound performance curves for 0 degrees and 180 degrees phase conditions match the crosscorrelation function of the echoes. The locations of both 0 degrees and 180 degrees phase peaks in the performance curves shift along the time axis by an amount that matches neural amplitude-latency trading in Eptesicus, confirming a temporal basis for jitter discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号