首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of select monoterpenes on nitrogen (N) mineralization and nitrification potentials were determined in four separate laboratory bioassays. The effect of increasing monoterpene addition was an initial reduction in NO3 -N production (nitrification inhibition), followed by a reduction in the sum of NH4 +-N and NO3 -N (inhibition of net N mineralization and net immobilization at high monoterpene additions. Monoterpenes could produce this pattern by inhibiting nitrification, reducing net N mineralization, enhancing immobilization of NO3 -N relative to NH4 +-N, and/or stimulating overall net immobilization of N by carbon-rich material.Initial monoterpene concentrations in the assay soils were about 5% of the added amount and were below detection after incubation in most samples.Potential N mineralization-immobilization, nitrification, and soil monoterpene concentrations were determined by soil horizon for four collections from a ponderosa pine (Pinus ponderosa) stand in New Mexico. Concentrations of monoterpenes declined exponentially with soil depth and varied greatly within a horizon. Monoterpene content of the forest floor was not correlated with forest floor biomass. Net N mineralization was inversely correlated with total monoterpene content of all sampled horizons. Nitrification was greatest in the mineral soil, intermediate in the F-H horizon, and never occurred in the L horizon. Nitrification in the mineral soil was inversely correlated with the amount of monoterpenes in the L horizon that contain terminal unsaturated carbon-carbon bonds (r 2 = 0.37, P 0.01). This pattern in the field corresponded to the pattern shown in the laboratory assays with increasing monoterpene additions.  相似文献   

2.
Photosynthesis-nitrogen relations in Amazonian tree species   总被引:18,自引:0,他引:18  
The relationships between leaf nitrogen (N), specific leaf area (SLA) (an inverse index of leaf thickness or density), and photosynthetic capacity (Amax) were studied in 23 Amazonian tree species to characterize scaling in these properties among natural populations of leaves of different ages and light microenvironments, and to examine how variation within species in N and SLA can influence the expression of the Amax-to-N relationship on mass versus area bases. The slope of the Amax-N relationship, change in A per change in N (mol CO2 gN-1 s-1), was consistently greater, by as much as 300%, when both measures were expressed on mass rather than area bases. The x-intercept of this relationship (N-compensation point) was generally positive on a mass but not an area basis. In this paper we address the causes and implications of such differences. Significant linear relationships (p<0.05) between mass-based leaf N (Nmass) and SLA were observed in 12 species and all 23 regressions had positive slopes. In 13 species, mass-based Amax (Amass) was positively related (p<0.05) with SLA. These patterns reflect the concurrent decline in Nmass and SLA with increasing leaf age. Significant (p<0.05) relationships between area-based leaf N (Narea) and SLA were observed in 18 species. In this case, all relationships had negative slopes. Taken collectively, and consistent in all species, as SLA decreased (leaves become thicker) across increasing leaf age and light gradients, Nmass also decreased, but proportionally more slowly, such that Narea increased. Due to the linear dependence of Amass on Nmass and a negative 4-intercept, thicker leaves (low SLA) therefore tend, on average, to have lower Nmass and Amass but higher Narea than thinner leaves. This tendency towards decreasing Amass with increasing Narea, resulting in a lower slope of the Amax-N relationship on an area than mass basis in 16 of 17 species where both were significant. For the sole species exception (higher area than mass-based slope) variation in Narea was related to variation in Nmass and not in SLA, and thus, these data are also consistent with this explanation. The relations between N, SLA and Amax explain how the rate of change in Amax per change in N can vary three-fold depending on whether a mass or area mode of expression is used.  相似文献   

3.
Variation in the photosynthetic function ofAbies amabilis foliage within a canopy was examined and related to three different processes that affect foliage function: foliage aging, sun-shade acclimation that occurred while foliage was expanding, and reacclimation after expansion was complete. Foliage produced in the sun had higher photosynthesis at light saturation (A max, mol·m-2·s-1), dark respiration (mol·m-2·s-1), nitrogen content (g·m-2), chlorophyll content (g·m-2), and chlorophylla:b ratio, and a lower chlorophyll to nitrogen ratio (chl:N), than foliage produced in the shade. As sun foliage becomes shaded, it becomes physiologically similar to shade foliage, even though it still retains a sun morphology. Shaded sun foliage exhibited lowerA max, dark respiration, nitrogen content, and chlorophylla:b ratio, and a higher chl:N ratio than sun foliage of the same age remaining in the open. However, shaded sun foliage had a higher chlorophyll content than sun foliage remaining in the open, even though true shade foliage had a lower chlorophyll content than sun foliage. This anomaly arises because as sun foliage becomes shaded, it retains a higher nitrogen content than shade foliage in a similar light environment, but the two forms have similar chl:N ratios. Within the canopy, most physiological indicators were more strongly correlated with the current light environment than with foliage age or leaf thickness, with the exception of chlorophyll content.A max decreased significantly with both decreasing current light environment of the foliage and increasing foliage age. The same trend with current light and age was found for the chlorophylla:b ratio. Foliage nitrogen content also decreased with a decrease in current light environment, but no distinct pattern was found with foliage age. Leaf thickness was also important for predicting leaf nitrogen content: thicker leaves had more nitrogen than thinner leaves regardless of light environment or age. The chl:N ratio had a strong negative correlation with the current light environment, and, as with nitrogen content, no distinct pattern was found with foliage age. Chlorophyll content of the foliage was not well correlated with any of the three predictor variables: current light environment, foliage age or leaf thickness. On the other hand, chlorophyll content was positively correlated with the amount of nitrogen in a leaf, and once nitrogen was considered, the current light environment was also highly significant in explaining the variation in chlorophyll content. It has been suggested that the redistribution of nitrogen both within and between leaves is a mechanism for photosynthetic acclimation to the current light environment. Within theseA. amabilis canopies, both leaf nitrogen and the chl:N ratio were strongly correlated with the current light environment, but only weakly with leaf age, supporting the idea that changing light is the driving force for the redistribution of nitrogen both within and between leaves. Thus, our results support previous theories on nitrogen distribution and partitioning. However,A max was significantly affected by both foliage age and the current light environment, indicating that changes in light alone are not enough to explain changes inA max with time.  相似文献   

4.
In the tropics, old-growth forests are converted to other land cover types at a high rate and young secondary forest may gain in importance. Information on associated changes in leaf gas exchange and other leaf traits can be valuable for modelling biogeochemical fluxes under altered land-use patterns. We studied in situ photosynthetic parameters and stomatal conductance for water vapour in eight abundant tree species of young secondary forest and eight tree species of natural old-growth forest in Central Sulawesi, Indonesia. In sun leaves, the average maximal stomatal conductance (g smax) in the secondary forest (SF) species was 2.1 times higher than in the old-growth forest (OGF) species. Species with a high g smax reduced g s sharply when vapour pressure deficit of the air increased, whereas species with a low g smax were much less sensitive to air humidity. For area-based photosynthetic capacity (A max-area), the SF species had a 2.3 times higher average than the OGF species. For both, g smax and A max-area the variation among species was higher in the OGF than in the SF. When all tree species (n=16) are considered, species means of specific leaf area (SLA), leaf N concentration and leaf P concentration were significantly correlated with g smax and A max-area. The strong correlation between A max-area and foliar P (r 2=0.8) is remarkable as the alluvial soils in the study region are rich in nutrients. If the eight OGF species are analysed separately, the only significant correlation was observed between SLA and mass-based A max; in the SF species strong correlations were found between leaf size and A max-area and g smax. These results show that the conversion of old-growth forest to young secondary forest in Sulawesi significantly alters tree leaf gas exchange characteristics and that chemical and structural leaf traits can be used for the prediction of these changes. The best correlations between leaf gas exchange parameters and leaf traits were obtained by different traits in the SF species, the OGF species and the entire pool of studied species.  相似文献   

5.
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-massN mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass, R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits. Received: 23 May 1997 / Accepted: 16 December 1997  相似文献   

6.
The light–nitrogen hypothesis suggests canopy photosynthesis is maximized when there is a positive relationship between irradiance received by foliage, its nitrogen content (per unit area Narea), and maximum rate of photosynthesis (Amax). Relationships among relative irradiance and Narea, allocation of nitrogen within the photosynthetic apparatus to Rubisco and chlorophyll, and Amax were examined in Pinus pinaster Ait. needles up to 6 years of age. Measurements were made before bud break in August 1998, and in May 1999 after the first ‘winter’ rains. In August, Narea in P. pinaster needles decreased from 5·1 to 5·7 g m?2 in sunlit 1‐year‐old needles to 2·3 g m?2 in shaded 6‐year‐old needles. In May, Narea was 5–40% less but spatial trends were the same. At both sampling dates, Amax was less in old shaded needles compared with young sunlit needles, and was thus consistent with the light–nitrogen hypothesis. Relationships between Narea and Amax were positive at both dates yet varied in strength and form. Allocation of nitrogen within the photosynthetic apparatus was qualitatively consistent with acclimation to light (i.e. Rubisco/Chl decreased with shading), but quantitatively suboptimal with respect to photosynthesis owing to consistent over‐investment in Rubisco. This over‐investment increased with height in the canopy and was greater in May than in August.  相似文献   

7.
A process-based leaf gas exchange model for C3 plants was developed which specifically describes the effects observed along light gradients of shifting nitrogen investment in carboxylation and bioenergetics and modified leaf thickness due to altered stacking of photosynthetic units. The model was parametrized for the late-successional, shade-tolerant deciduous species Acer saccharum Marsh. The specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) and the maximum photosynthetic electron transport rate per unit cytochrome f (cyt f) were used as indices that vary proportionally with nitrogen investment in the capacities for carboxylation and electron transport. Rubisco and cyt f per unit leaf area are related in the model to leaf dry mass per area (MA), leaf nitrogen content per unit leaf dry mass (Nm), and partitioning coefficients for leaf nitrogen in Rubisco (PR) and in bioenergetics (PB). These partitioning coefficients are estimated from characteristic response curves of photosynthesis along with information on lear structure and composition. While PR and PB determine the light-saturated value of photosynthesis, the fraction of leaf nitrogen in thylakoid light-harvesting components (PL) and the ratio of leaf chlorophyll to leaf nitrogen invested in light harvesting (CB), which is dependent on thylakoid stoichiometry, determine the initial photosynthetic light utilization efficiency in the model. Carbon loss due to mitochondrial respiration, which also changes along light gradients, was considered to vary in proportion with carboxylation capacity. Key model parameters - Nm, PR, PB, PLCB and stomatal sensitivity with respect to changes in net photosynthesis (Gr) – were examined as a function of MA, which is linearly related to irradiance during growth of the leaves. The results of the analysis applied to A. saccharum indicate that PB and PR increase, and Gf, PL and CB decrease with increasing MA. As a result of these effects of irradiaiice on nitrogen partitioning, the slope of the light-saturated net photosynthesis rate per unit leaf dry mass (Ammax) versus Nm relationship increased with increasing growth irradiance in mid-season. Furthermore, the nitrogen partitioning coefficients as well as the slopes of Ammax versus Nm were independent of season, except during development of the leaf photosynthetic apparatus. Simulations revealed that the acclimation to high light increased Ammax by 40% with respect to the low light regime. However, light-saturated photosynthesis per leaf area (Aamax) varied 3-fold between these habitats, suggesting that the acclimation to high light was dominated by adjustments in leaf anatomy (Aamax=AmmaxMA) rather than in foliar biochemistry. This differed from adaptation to low light, where the alterations in foliar biochemistry were predicted to be at least as important as anatomical modifications. Due to the light-related accumulation of photosynthetic mass per unit area, Aamax depended on MA and leaf nitrogen per unit area (Na). However, Na conceals the variation in both MA and Nm (Na=NmMA), and prevents clear separation of anatomical adjustments in foliage structure and biochemical modifications in foliar composition. Given the large seasonal and site nutrient availability-related variation in Nm, and the influences of growth irradiance on nitrogen partitioning, the relationship between Aamax and Na is universal neither in time nor in space and in natural canopies at mid-season is mostly driven by variability in MA. Thus, we conclude that analyses of the effects of nitrogen investments on potential carbon acquisition should use mass-based rather than area-based expressions.  相似文献   

8.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

9.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

10.
It is still unclear to what extent variations in foliar δ13C and nitrogen can be used to detect seasonal changes in canopy productivity. We hypothesize that in a wet and cloudy fir forest, seasonally higher litterfall and lower leaf area index (LAI) are correlated with higher mass-based leaf nitrogen (N mass) and net primary productivity (NPP), while foliar δ13C may change with specific leaf area (SLA), area-based leaf nitrogen (N area), and/or starch concentration. In order to test our hypotheses, stand-level litterfall and the means of δ13C, N mass, N area, SLA, and starch concentration of canopy needles for a wet and cloudy Abies fabri forest in the Gongga Mountains were monthly measured during the growing season. Seasonal estimates of LAI were obtained from our previous work. A conceptual model was used to predict seasonal NPP of the fir forest. Seasonal mean δ13C and N mass and climatic variables were used as inputs. The δ13C across 1–7-year-old needles increased from May to September associated with decreasing SLA and increasing N area. There were no significant differences in seasonal starch concentration. With increasing litterfall and decreasing LAI, seasonal mean N mass increased, while the δ13C varied little. The simulated NPP increased with increasing litterfall and related traits of N mass and N area. Our data generally supported the hypotheses. The results also suggest that in the forest with relatively moist and cloudy environment, the largest fraction of annual carbon gain may occur in the early part of the growing season when higher litterfall results in higher N mass of canopy leaves.  相似文献   

11.
Abstract: In the postmortem human brain (27 specimens of frontal cortex, Brodmann area 9), the specific binding of the antagonists [3H]RX 821002 (2-methoxyidazoxan) to α2A-adrenoceptors and that of [3H]idazoxan to l2-imidazo-line sites (a nonadrenoceptor mitochondrial site) were determined in parallel to study the effect of aging (range, 4–89 years) on both brain proteins. The density of α2A-adrenoceptors and age were negatively correlated (r=-0.71; p < 0.001). In contrast, the density of l2-imidazo-line sites was positively correlated with aging (r= 0.59; p < 0.005). The ratio of receptor densities (α2A/l2) also showed a marked negative correlation with age (r=-0.76; p < 0.001). In an age-selected group (range, 10–89 years), the density of monoamine oxidase (MAO)-B sites labeled by [3H]Ro 19–6327 (lazabemide) also showed a positive correlation with age (r= 0.80; p < 0.005). In these subjects, the density of l2-imidazoline sites correlated well with the density of MAO-B sites (r= 0.70; p < 0.005). The ratio of the density of these sites (MAO-B/l2) did not correlate with the age of the subject at death (r=-0.15). In the human frontal cortex, idazoxan displayed very low affinity (Ki= 89 μM) against the binding of [3H]Ro 19–6327 to MAO-B, which discounted a direct interaction of [3H]idazoxan with the active center of the enzyme and indicated that the l2-imidazoline site cannot be identified with MAO-B. However, l2-imidazoline sites and MAO-B show a clear coexpression not only in the human frontal cortex during the process of aging, but also in various brain regions of the human and rat brains. It is suggested that the l2-imidazoline site has a specific location on glial (astrocyte) cells.  相似文献   

12.
Andrew G. Peterson 《Oecologia》1999,118(2):144-150
The relationship between photosynthetic carbon assimilation (A max) and leaf nitrogen content (N leaf) can be expressed on either a leaf area basis (A area vs N area) or a leaf mass basis (A mass vs N mass). Dimensional analysis shows that the units for the slope of this relationship are the same for both expressions (μmol [CO2] g−1 [N] s−1). Thus the slope measures the change in CO2 assimilation per gram of nitrogen, independent of leaf mass or leaf area. Although they have the same units, large differences between the area and mass-based slopes have been observed over a broad range of taxonomically diverse species. Some authors have claimed that regardless of these differences, the fundamental nature of the A max-N leaf relationship is independent of the units of expression. In contrast, other authors have claimed that the area-based A max-N leaf relationship is fundamentally different from the mass-based relationship because of interactions between A max, N leaf, and leaf mass per area (LMA, g [leaf] m−2 [leaf]). In this study we consider the mathematical relationships involved in the transformation from mass- to area-based expressions (and vice versa), and the implications this transformation has for the slope of the A max-N leaf relationship. We then show that the slope of the relationship is independent of the units of expression when the effect of LMA is controlled statistically using a multiple regression. The validity of this hypothesis is demonstrated using 13 taxonomically and functionally diverse C3 species. This analysis shows that the slope of the A max-N leaf relationship is similar for the mass- and area-based expressions and that significant errors in the estimate of the slope can arise when the effect of LMA is not controlled. Received: 7 May 1998 / Accepted: 19 October 1998  相似文献   

13.
ETA subtype selective antagonists constitute a novel and potentially important class of agents for the treatment of pulmonary hypertension, heart failure, and other pathological conditions. In this paper, 60 benzodiazepine derivatives displaying potent activities against ETA and ETB subtypes of endothelin receptor were selected to establish the 3D-QSAR models using CoMFA and CoMSIA approaches. These models show excellent internal predictability and consistency, external validation using test-set 19 compounds yields a good predictive power for antagonistic potency. Statistical parameters of models were obtained with CoMFA-ETA (q 2 = 0.787, r 2 = 0.935, r 2 pred  = 0.901), CoMFA-ETB (q 2 = 0.842, r 2 = 0.984, r 2 pred  = 0.941), CoMSIA-ETA (q 2 = 0.762, r 2 = 0.971, r 2 pred  = 0.958) and CoMSIA-ETB (q 2 = 0.771, r 2 = 0.974, r 2 pred  = 0.953) respectively. Field contour maps (CoMFA and CoMSIA) corresponding to the ETA and ETB subtypes reflects the characteristic similarities and differences between these types. The results of this paper provide valuable information to facilitate structural modifications of the title compounds to increase the inhibitory potency and subtype selectivity of endothelin receptor.  相似文献   

14.
Measurements of photosynthesis at saturating irradiance and CO2 partial pressure, A max, “adjusted” normalised difference vegetation index, R aNDVI, and photochemical reflectance index, R PRI, were made on trees sampled along a soil chronosequence to investigate the relationship between carbon uptake and ecosystem development in relation to nutrient availability. Measurements were made on the three most dominant species at six sites along the sequence in South Westland, New Zealand with soil age ranging from <6 to 120,000 years resulting from the retreat of the Franz Josef glacier. The decrease in soil phosphorus availability with increasing soil age and high soil nitrogen availability at the two youngest sites, due to the presence of a nitrogen-fixing species, provided marked differences in nutrient availability. Mean A max was high at the two youngest sites, then decreased markedly with increasing site age. Analysis of the data for individual species within sites revealed separation of groups of species in the response of A max to N m and P m, suggesting complex interactions between the two nutrients. There were strong linear relationships for leaf-level R aNDVI and R PRI with A max, at high irradiance, showing that measurements of reflectance indices can be used to estimate A max for foliage with a range in morphology and nutrient concentrations. Notwithstanding the change in species composition from angiosperms to conifers with increasing site age, the presence of nitrogen-fixing species, the variability in foliage morphology from flat leaves to imbricate scales and a wide range in foliar nitrogen and phosphorus concentrations, there were strong positive linear relationships between site average A max and foliage nitrogen, N m, and phosphorus, P m, concentrations on a foliage mass basis. The results provide insights to interpret the regulation of photosynthesis across natural ecosystems with marked gradients in nitrogen and phosphorus availability.  相似文献   

15.
Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH 4 + –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.  相似文献   

16.
In entomopathogenic hyphomycetes, desired candidates against the brown planthopper, Nilaparvata lugens (a sap-sucking rice pest in Asia), are lacking. In this study, 21 Beauveria bassiana isolates from heterologous host insects showed low pathogenicity to third-instar nymphs sprayed at the high concentration of ∼1000 conidia/mm2, causing only 2-23% mortalities. Of those, three isolates killed significantly more nymphs (up to 45-62%) after two in vivo passages but no more after further passage. Conidial hydrophobicity rates (Hr), zeta potentials (Pz), and subtilisin-like protease (Pr1) activities (Ap) of these isolates showed the same trends in the three host passages (N: 0-3). In multivariate correlation, the variables N, Hr and Pz were found contributing 89% to the mortality variation (r2 = 0.89). Significant positive correlations were also found between Hr and N (r2 = 0.64), Pz and N (r2 = 0.52), Ap and N (r2 = 0.51), Hr and Ap (r2 = 0.45), and Pz and Ap (r2 = 0.57), respectively. However, irregular changes of Hr and Pz occurred in four other isolates, whose pathogenicity to N. lugens was not enhanced by repeated host passages, resulting in no correlation between the variables. Our data indicate that the conidial surface properties Hr and Pz associated with cuticle adhesion reflect the heterologous host-induced adaptation and help to select fungal candidates against N. lugens from repeated in vivo passages.  相似文献   

17.
Posidonia oceanica, a seagrass endemic to the Mediterranean forms extended and extremely persistent meadows. It is a clonal plant with an apparently irregular pattern of flowering events. An extensive bibliographic review allowed the reconstruction of past flowering events of this species around the Mediterranean, with a high degree of confidence for the last 30 years. The data series on annual flowering prevalence (FP, flowering records per total records) and flowering intensity (FI, fraction of flowering shoots) produced have been compared with four series on Sea Surface annual Temperature maxima (SSTmax) obtained for the NW Mediterranean (averaged from the local data series of l'Estartit and Villefranche: 1957–2005) and for the Eastern, Western basin and the whole Mediterranean sea (extracted from NCEP Reynolds interpolated SST maps: 1982–2005). Significant warming trends are detected in the Mediterranean SSTmax series, at a rate of (mean+SE) 0.04±0.01°C yr−1 (R2=0.24, P<0.01, N=24 years), in the Eastern basin series (0.06±0.01°C yr−1, R2=0.43, P<0.001, N=24 years) and in the long SSTmax series of the NW Mediterranean (0.02±0.01 C yr−1, R2=0.12, P<0.02, N=49 years). The magnitudes of the SSTmax anomalies around the absolute warming trend do not increase with time in any SSTmax series. Peaks of FP and FI in the Mediterranean seem to occur each 9–11 years, and coincide with peaks of annual SSTmax. Annual FP and FI increase with the residuals of annual SSTmax warming trend in all Mediterranean basins (FPMED: R2=0.27, P<0.01, N=23; FPNW: R2=0.34, P<0.01, N=31; FPE: R2=0.20; P<0.10, N=23). An outstanding event of P. oceanica flowering across the Mediterranean has been registered in Autumn 2003; 1 month after the highest annual SSTmax recorded in the series. The hypothesis of flowering induction by thermal stress as the possible cause of this relationship is discussed, as well as the potential use of P. oceanica flowering record as early indicator of biological change induced by global sea warming in Mediterranean marine ecosystems.  相似文献   

18.
The relationships of monoterpene emission with temperature, light, photosynthesis and stomatal conductance (gs) were studied in Quercus ilex L. trees throughout the four annual seasons under field conditions. The highest monoterpene emission was measured in spring and summer (midday average of 11 μg [g DW]?1 h?1), whereas the lowest rates were found in autumn and winter (midday averages of 0.51 and 0.23 μg [g DW]?1 h?1, respectively). In spring and summer, limonene was the monoterpene emitted at highest rate (midday averages of 5.27–6.69 μg [g DW]?1 h?1), whereas α-pinene was emitted the most in autumn and winter (midday averages of 0.31 μg [g DW]?1 h?1). The monoterpenes limonene, α-pinene and β-pinene represented about 75–95% of total detected monoterpenes. The total monoterpene emission rates represented about 0.04% of carbon fixed in autumn, 0.17% in winter, 0.84–2.51% in spring and 1.22–5.13% in summer. Significant correlations of total monoterpene emission with temperature were found when considering either summer emission or the emission over the entire year, whereas significant correlations with net photosynthetic rates were only found when considering summer season. Among individual terpenes, the most volatile, α-pinene and β-pinene, were more correlated with temperature than with net photosynthetic rates whereas the less volatile limonene was more correlated with net photosynthetic rate. Thus, under field conditions it seems that dependency of monoterpene emission on photosynthetic rate or temperature is partly related with volatility of the compounds. Influences of seasonality, temperature, photosynthetic rates and volatility should be considered in inventories and models of emission rates in Mediterranean ecosystems.  相似文献   

19.
Several reproductive triats in plants were studied in more than 200 populations of 61 wild species from diverse ecological conditions. As a result, it was found that there occur three distinct types of plants in the energy allocation patterns to reproductive structures (RA) and the propagule output per plant (PN), i.e. (1) the number of propagules per plant increases in response to the increase in RA (Type I), (2) the number of propagules decreases in response to the increase in RA (Type II), and (3) the RA remains constant despite the great differences in the propagule number per plant. A conspicuous trade-off relationship was also discovered to occur between the RA to a single propagule (RA) and the propagule output per plant (PN), such that log RA=logC−blot PN, or RA=C/PN b =CPN b , where C is a constant. The three different ranges ofb-values were recognized, i.e.b<1.0,b>1.0, andb=1.0, which correspond to Type I, Type II, and Type III, respectively. Related problems to the concept ofr- andK-strategy are also discussed.  相似文献   

20.
Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号