首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文利用生物信息学方法比较SARS病毒和其他冠状病毒基因组。通过数据库搜索,找出与SARS病毒基因组相似的核酸或蛋白质序列,并对相似序列进行比对,分析它们的共性和差异。结果表明,SARS病毒在基因组的组织上及结构蛋白质方面与现有冠状病毒有比较大的相似性,SARS病毒基因组与冠状病毒基因组相关。但是,SARS病毒基因组还存在一些特异性序列,ORF1a和S蛋白(特别是S1)的变化以及SARS—CoV特异性的非结构蛋白可能是SARS发病机理与传染特性区别于其他冠状病毒的分子基础。在全基因组水平上进行核酸单词出现频率分析,结果表明,SARS病毒远离已知的其他冠状病毒,单独成为一类。  相似文献   

2.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

3.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

4.
目的建立敏感的SARS小动物模型。方法通过显微注射技术,将编码SARS-CoV细胞受体的人血管紧张素转换酶(hACE2)基因导入小鼠的基因组中制备了hACE2转基因小鼠,在小鼠ACE2(mACE2)启动子的调控下,hACE2蛋白在转基因小鼠的肺脏、心脏、肾脏和小肠表达。我们观察了野生型和转基因小鼠在SARS冠状病毒接种后病原学和病理学方面的反应。结果在接种后第3天和第7天,病毒能够更有效地在转基因小鼠的肺脏复制,而且转基因小鼠出现更严重的肺损伤。肺组织的损伤包括肺间质充血、出血,单核细胞、淋巴细胞浸润及血浆蛋白的渗出,肺泡上皮细胞增生、脱落,此外,在转基因小鼠的某些器官还发现了血管炎、变性和坏死等病理变化。在转基因小鼠的肺上皮细胞、血管内皮细胞和脑神经细胞检测到病毒抗原。结论转基因小鼠比野生型小鼠对SARS病毒更易感,而且表现出更接近SARS患者的病理变化。  相似文献   

5.
严重急性呼吸系统综合征(SARS)是由SARS冠状病毒(SARS—CoV)引起的一种新型人类疾病,具有高致病性、高传染性、高死亡率的特点。Spike蛋白是冠状捅毒膜表面的糖蛋白突出,构成病毒的包膜子粒,在病毒与其受体结合、通过膜融合进入宿主细胞以及诱导机体产生中和性抗体的过程中发挥着重要的作用:目前利用Spike蛋白开发出的一些防治SARS的药物和疫苗在动物和体外实验中有良好的抗病毒作用。本文阐述了SARS—CoV Spike蛋白的结构与功能,为抗SARS药物及疫苗的研发提供一定的理论基础.  相似文献   

6.
A number of structural genomics/proteomics initiatives are focused on bacterial or viral pathogens. In this article, we will review the progress of structural proteomics initiatives targeting the SARS coronavirus (SARS-CoV), the etiological agent of the 2003 worldwide epidemic that culminated in approximately 8,000 cases and 800 deaths. The SARS-CoV genome encodes 28 proteins in three distinct classes, many of them with unknown function and sharing low similarity to other proteins. The structures of 16 SARS-CoV proteins or functional domains have been determined to date. Remarkably, eight of these 16 proteins or functional domains have novel folds, indicating the uniqueness of the coronavirus proteins. The results of SARS-CoV structural proteomics initiatives will have several profound biological impacts, including elucidation of the structure-function relationships of coronavirus proteins; identification of targets for the design of anti-viral compounds against SARS-CoV and other coronaviruses; and addition of new protein folds to the fold space, with further understanding of the structure-function relationships for several new protein families. We discuss the use of structural proteomics in response to emerging infectious diseases such as SARS-CoV and to increase preparedness against future emerging coronaviruses.  相似文献   

7.
重症急性呼吸综合征(SARS)是由SARS冠状病毒(SARS-CoV)引起的一种急性传染病,在其序列被测出后几个月内人们就找到了SARS-CoV的受体血管紧张素转换酶2(ACE2)。因病毒受体与病毒入侵细胞密切相关,因而有必要深入研究ACE2与SARS-CoV之间的关系。本文总结了ACE2在各组织器官的分布及功能,分析了ACE2基因的变异与病毒进入及SARS疾病严重程度之间的关系、ACE2基因的表达水平与病毒进入及SARS疾病严重程度之间的关系。这些研究将为理解SARS-CoV与ACE2之间的相互作用及设计针对ACE2的抗SARS药物提供重要的理论依据。  相似文献   

8.
用SARS冠状病毒全基因组芯片杂交方法分析SARS-CoV   总被引:2,自引:1,他引:2  
为从临床样品中检测和分析SARSCoV病毒打基础,并为分析SARSCoV病毒的复制和转录等机理提供一种有效方法。以SARS冠状病毒TOR2株序列作为标准设计和制备一种覆盖SARS冠状病毒全基因组的寡聚核苷酸芯片,探针长度为70nt,每相邻的探针序列重复25nt,共660条。用该芯片分析了细胞培养的SARSCoV病毒总RNA、7个SARSCoV病毒的基因克隆片段。对RNA样品用随机引物进行反转录PCR获得cDNA。对DNA用随机引物扩增和dUTPcy3标记。结果用这种芯片杂交检测SARSCoV病毒RNA可见阳性信号呈全基因组分布,并且有多处连续的阳性信号点;用正常人的白细胞RNA为对照,杂交未出现明显阳性信号。检测7个SARSCoV病毒基因克隆片段,在该片段相应的探针区段出现连续阳性信号点。这种方法可有效地检测和分析样品中SARS冠状病毒全基因组的信息。  相似文献   

9.
SARS冠状病毒(SARS-CoV)是一种新型的冠状病毒,其基因组大小约为30,000 nt,为单股正链RNA。病毒基因中的1-72个核甘酸为前导序列。核衣壳(Nucleocapsid,N)蛋白是冠状病毒的主要结构蛋白,它在病毒基因转录,翻译以及病毒颗粒包装中起重要作用。在本研究中,我们通过PCR的方法从SARS-CoV cDNA中克隆N基因,将基因克隆到大肠杆菌表达载体中,经表达纯化获得大量重组蛋白,通过亲和层析和凝胶过滤层析获得高纯度的N蛋白。同时构建前导RNA的转录模板,经体外转录得到地高辛标记的RNA。使用Northwestern分析技术,我们证实纯化的N蛋白在体外可以与RNA发生特异性的结合。N蛋白与病毒RNA的结合特性及其在病毒生活周期中的所起作用的初步研究,为下一步设计出有效的阻断病毒周期从而达到抗病毒目的的药物或疫苗奠定了基础。  相似文献   

10.
A novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane. Here we describe the construction and expression of a soluble codon-optimized SARS-CoV S glycoprotein comprising the first 1,190 amino acids of the native S glycoprotein (S(1190)). The codon-optimized and native S glycoproteins exhibit similar molecular weight as determined by Western blot analysis, indicating that synthetic S glycoprotein is modified correctly in a mammalian expression system. S(1190) binds to the surface of Vero E6 cells, a cell permissive to infection, as demonstrated by fluorescence-activated cell sorter analysis, suggesting that S(1190) maintains the biologic activity present in native S glycoprotein. This interaction is blocked with serum obtained from recovering SARS patients, indicating that the binding is specific. In an effort to map the ligand-binding domain of the SARS-CoV S glycoprotein, carboxy- and amino-terminal truncations of the S(1190) glycoprotein were constructed. Amino acids 270 to 510 were the minimal receptor-binding region of the SARS-CoV S glycoprotein as determined by flow cytometry. We speculate that amino acids 1 to 510 of the SARS-CoV S glycoprotein represent a unique domain containing the receptor-binding site (amino acids 270 to 510), analogous to the S1 subunit of other coronavirus S glycoproteins.  相似文献   

11.
To establish a small animal model of severe acute respiratory syndrome (SARS), we developed a mouse model of human severe acute respiratory syndrome coronavirus (SARS-CoV) infection by introducing the human gene for angiotensin-converting enzyme 2 (hACE2) (the cellular receptor of SARS-CoV), driven by the mouse ACE2 promoter, into the mouse genome. The hACE2 gene was expressed in lung, heart, kidney, and intestine. We also evaluated the responses of wild-type and transgenic mice to SARS-CoV inoculation. At days 3 and 7 postinoculation, SARS-CoV replicated more efficiently in the lungs of transgenic mice than in those of wild-type mice. In addition, transgenic mice had more severe pulmonary lesions, including interstitial hyperemia and hemorrhage, monocytic and lymphocytic infiltration, protein exudation, and alveolar epithelial cell proliferation and desquamation. Other pathologic changes, including vasculitis, degeneration, and necrosis, were found in the extrapulmonary organs of transgenic mice, and viral antigen was found in brain. Therefore, transgenic mice were more susceptible to SARS-CoV than were wild-type mice, and susceptibility was associated with severe pathologic changes that resembled human SARS infection. These mice will be valuable for testing potential vaccine and antiviral drug therapies and for furthering our understanding of SARS pathogenesis.  相似文献   

12.
The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. Coronaviruses and their closest relatives possess extremely large plus-strand RNA genomes and employ unique mechanisms and enzymes in RNA synthesis that separate them from all other RNA viruses. The SARS epidemic prompted a variety of studies on multiple aspects of the coronavirus replication cycle, yielding both rapid identification of the entry mechanisms of SARS-CoV into host cells and valuable structural and functional information on SARS-CoV proteins. These recent advances in coronavirus research have important implications for the development of anti-SARS drugs and vaccines.  相似文献   

13.
Yuan X  Shan Y  Yao Z  Li J  Zhao Z  Chen J  Cong Y 《Molecules and cells》2006,21(2):186-191
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondria-specific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.  相似文献   

14.
目的:对该实验室已建立的检测SARS冠状病毒多聚酶基因的套式RT-PCR方法进行优化。方法:从SAPS病人的嗽口水标本中提取RNA,调整套式PCR的退火温度,扩增SARS冠状病毒多聚酶部分基因。扩增出的阳性片段连接入pGEM-T载体中,测序后比较其与已知SARS冠状病毒的同源性。结果:通过改变PCR条件,成功从一SARS病人的嗽口水中扩增出SARS冠状病毒多聚酶部分基因。结论:针对不同标本优化PCR反应条件非常重要。  相似文献   

15.
The aetiology of SARS: Koch's postulates fulfilled   总被引:2,自引:0,他引:2  
Proof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca fascicularis). SARS-CoV-infected macaques developed a disease comparable to SARS in humans; the virus was re-isolated from these animals and they developed SARS-CoV-specific antibodies. This completed the fulfilment of Koch's postulates, as modified by Rivers for viral diseases, for SARS-CoV as the aetiological agent of SARS. Besides the macaque model, a ferret and a cat model for SARS-CoV were also developed. These animal models allow comparative pathogenesis studies for SARS-CoV infections and testing of different intervention strategies. The first of these studies has shown that pegylated interferon-alpha, a drug approved for human use, limits SARS-CoV replication and lung damage in experimentally infected macaques. Finally, we argue that, given the worldwide nature of the socio-economic changes that have predisposed for the emergence of SARS and avian influenza in Southeast Asia, such changes herald the beginning of a global trend for which we are ill prepared.  相似文献   

16.
17.
18.
Vasil'ev S  Shen JR  Kamiya N  Bruce D 《FEBS letters》2004,561(1-3):111-116
The open reading frame 3 of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes a predicted protein 3a, consisting of 274 amino acids, that lacks any significant similarities to any known protein. We generated specific antibodies against SARS protein 3a by using a synthetic peptide (P2) corresponding to amino acids 261-274 of the putative protein. Anti-P2 antibodies and the sera from SARS patients could specifically detect the recombinant SARS protein 3a expressed in Escherichia coli and in Vero E6 cells. Expression of SARS protein 3a was detected at 8-12 h after infection and reached a higher level after approximately 24 h in SARS-CoV-infected Vero E6 cells. Protein 3a was also detected in the alveolar lining pneumocytes and some intra-alveolar cells of a SARS-CoV-infected patient's lung specimen. Recombinant protein 3a expressed in Vero E6 cells and protein 3a in the SARS-CoV-infected cells was distributed over the cytoplasm in a fine punctate pattern with partly concentrated staining in the Golgi apparatus. Our study demonstrates that SARS-CoV indeed expresses a novel protein 3a, which is present only in SARS-CoV and not in other known CoVs.  相似文献   

19.
目的:追踪检测SARS冠状病毒(SARS-CoV)抗体在严重急性呼吸综合征(SARS)患者血清中的产生及其转归规律,为SARS诊断及防治提供依据。方法:对41例临床诊断SARS患者的血清进行了连续3年的检测,分别应用间接免疫荧光(IFA)检测患者血清特异性IgG抗体平均滴度,应用双抗原夹心ELISA法检测患者血清核衣壳蛋白(N蛋白)抗体的平均滴度,绘制消涨曲线,得出消涨规律。结果:应用IFA检测患者血清特异性IgG抗体与应用双抗原夹心ELISA法检测N蛋白抗体所得到的消涨规律不同,前者测得康复者血清IgG抗体滴度维持在较低水平,但后者检测35例康复者血清N蛋白抗体仍维持在较高水平。结论:SARS-CoV的N蛋白是免疫原性较强的抗原,感染3年后仍存在高滴度抗体;抗原夹心ELISA检测SARS-CoV N蛋白抗体的灵敏度较IFA方法高。  相似文献   

20.
肿瘤患者血清中SARS-CoV抗体阳性原因分析   总被引:2,自引:0,他引:2  
探讨SARS冠状病毒(SARS—CoV)抗体在SARS病原学诊断中的特异性及其在肿瘤患血清中的假阳性问题。应用ELISA和荧光定量RT-PCR技术检测了111例正常对照和40例肿瘤患血清中SARS—CoV抗体的阳性率。在111例正常对照中,IgM抗体均阴性,IgG抗体的阳性率为3.6%(4/111);IgG抗体诊断SARS的特异性为96.4%,两种抗体同时阳性诊断SARS的特异性为100%。40例肿瘤患中,IgM抗体均阴性,IgG抗体阳性率17.5%(7/40)。经RT—PCR检测,上述肿瘤患阳性病例均为阴性。结果表明,同时测定SARS—CoV的两种抗体可降低诊断的假阳性率,提高诊断的特异性。用非纯化SARS—CoV抗原制备的ELISA试剂盒测定肿瘤患的SARS—CoV抗体,可能出现假阳性。在肿瘤患中出现假阳性的原因可能与包被的抗原有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号