首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
L Dotto 《CMAJ》1996,154(8):1193-1196
Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance.  相似文献   

3.
Sleep and motor skill learning   总被引:5,自引:0,他引:5  
The improvement of a perceptual or motor skill continues after training has ended. The central question is whether this improvement is just a function of time or whether sleep, a certain circadian phase, or their interaction (sleep occurring in a particular circadian phase) is favorable to the reprocessing of recent memory traces. In this issue of Neuron, provide behavioral evidence that most of the improvement of a motor skill depends on nocturnal sleep.  相似文献   

4.
5.
Recent studies on several species of oscine songbirds show that they achieve their varied vocal performances through coordinated activity of respiratory, syringeal, and other vocal tract muscles in ways that take maximum advantage of the acoustic flexibility made possible by the presence of two independently controlled sound sources in their bipartite syrinx (vocal organ). During song, special motor programs to respiratory muscles alter the pattern of ventilation to maintain the supply of respiratory air and oxygen to permit songs of long duration, high syllable repetition rates, or maximum spectral complexity. Each side of the syrinx receives its own motor program that, together with that sent to respiratory muscles, determines the acoustic properties of the ipsilaterally produced sound. The acoustic expression of these bilaterally distinct, phonetic motor patterns depends on the action of dorsal syringeal adductor muscles that, by opening or closing the ipsilateral side of the syrinx to airflow, determine the amount each side contributes to song. The syringeally generated sound is further modified by muscles that control the shape of the vocal tract. Different species have adopted different motor strategies that use the left and right sides of the syrinx in patterns of unilateral, bilateral, alternating, or sequential phonation to achieve the differing temporal and spectral characteristics of their songs. As a result, the degree of song lateralization probably varies between species to form a continuum from unilateral dominance to bilateral equality. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 632–652, 1997  相似文献   

6.
In many species of passerine songbirds, males learn their song during defined periods of life. Female song in often reduced or absent, as are the brain regions controlling song. Sexual differences in the brain arise because of the action of sex steroids, which trigger the formation of some neural pathways (especially the pathway from the higher vocal center to the robust nucleus) and prevent the atrophy of others in males. These neural changes occur during periods of developmental song learning and can recur during periods of learning in adult birds. The process of learning is correlated with major increases or decreases in the number of neurons in specific neuronal populations, suggesting that the formation or loss of specific neural pathways regulates the ability to learn. Species differences in sexual differentiation and learning allow informative cross-species comparisons of neural structure and behavior. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
One of the challenges when considering the motor control of birdsong is to understand how such a wide variety of temporally and spectrally diverse vocalizations are learned and produced. A better understanding of central neural processing, together with direct endoscopic observations and physiological studies of peripheral motor function during singing, has resulted in the formation of new theoretical models of song production. Recent work suggests that it may be more profitable to focus on the temporal relationship between control parameters than to attempt to directly correlate neural processing with details of the acoustic output.  相似文献   

8.
In many species of passerine songbirds, males learn their song during defined periods of life. Female song is often reduced or absent, as are the brain regions controlling song. Sexual differences in the brain arise because of the action of sex steroids, which trigger the formation of some neural pathways (especially the pathway from the higher vocal center to the robust nucleus) and prevent the atrophy of others in males. These neural changes occur during periods of developmental song learning and can recur during periods of learning in adult birds. The process of learning is correlated with major increases or decreases in the numbers of neurons in specific neuronal populations, suggesting that the formation or loss of specific neural pathways regulates the ability to learn. Species differences in sexual differentiation and learning allow informative cross-species comparisons of neural structure and behavior.  相似文献   

9.
The process through which young male songbirds learn the characteristics of the songs of an adult male of their own species has strong similarities with speech acquisition in human infants. Both involve two phases: a period of auditory memorization followed by a period during which the individual develops its own vocalizations. The avian 'song system', a network of brain nuclei, is the probable neural substrate for the second phase of sensorimotor learning. By contrast, the neural representation of song memory acquired in the first phase is localized outside the song system, in different regions of the avian equivalent of the human auditory association cortex.  相似文献   

10.
Sensitive periods and circuits for learned birdsong   总被引:2,自引:0,他引:2  
Experience influences the development of certain behaviors and their associated neural circuits during a discrete period after birth. Songbirds, with their highly quantifiable vocal output and well-delineated vocal control circuitry, provide an excellent context in which to examine the neural mechanisms regulating sensitive periods for learning. Recent discoveries indicate that auditory input to the vocal control circuitry in songbirds is dynamically modulated and show that neural circuitry previously thought to be used only in plastic juvenile song may also actively maintain stable adult song. These findings provide important clues to how sensitive periods for auditory feedback and vocal plasticity are regulated during song development.  相似文献   

11.
The neuromuscular control of birdsong.   总被引:10,自引:0,他引:10  
Birdsong requires complex learned motor skills involving the coordination of respiratory, vocal organ and craniomandibular muscle groups. Recent studies have added to our understanding of how these vocal subsystems function and interact during song production. The respiratory rhythm determines the temporal pattern of song. Sound is produced during expiration and each syllable is typically followed by a small inspiration, except at the highest syllable repetition rates when a pattern of pulsatile expiration is used. Both expiration and inspiration are active processes. The oscine vocal organ, the syrinx, contains two separate sound sources at the cranial end of each bronchus, each with independent motor control. Dorsal syringeal muscles regulate the timing of phonation by adducting the sound-generating labia into the air stream. Ventral syringeal muscles have an important role in determining the fundamental frequency of the sound. Different species use the two sides of their vocal organ in different ways to achieve the particular acoustic properties of their song. Reversible paralysis of the vocal organ during song learning in young birds reveals that motor practice is particularly important in late plastic song around the time of song crystallization in order for normal adult song to develop. Even in adult crystallized song, expiratory muscles use sensory feedback to make compensatory adjustments to perturbations of respiratory pressure. The stereotyped beak movements that accompany song appear to have a role in suppressing harmonics, particularly at low frequencies.  相似文献   

12.
The sounds and songs of birds have inspired the musical compositions of numerous cultures throughout the globe. This article examines a variety of compositions from Western music that feature birdsong and explores the concept of birds as both vocalists and instrumentalists. The concept of birds as composers is then developed-how they use rhythmic variations, pitch relationships, and combinations of notes similar to those found in music-and the theory that birds create variation in their songs partially to avoid monotony is considered. Various families of birds that borrow sounds from other species are surveyed, in particular the European starling (Sturnus vulgaris), which may have inspired a Mozart composition. We conclude that the fusion of avian bioacoustics and the study of birdsong in music may function as a conservation tool, raising the awareness of humans and stimulating future generations to save for posterity what remains of the natural world.  相似文献   

13.
14.
15.
Modeling of consciousness-related phenomena and neuroengineering are fields that are rapidly growing together. We review recent approaches and developments and point out some promising directions of future research: Understanding the dynamics of consciousness states and associated oscillations, pathological oscillations as well as their treatment by stimulation, neuroprosthetics and brain-computer-interface approaches, and stimulation approaches that probe, influence and strengthen memory consolidation. In all these fields, computational models connect theory, neurophysiology and neuroengineering research and pave a way towards medical applications.  相似文献   

16.
  相似文献   

17.
We investigated whether activity of expiratory muscles reflects lateralized activity of the vocal organ during production of birdsong. Respiration and syringeal motor activity were assessed in brown thrashers by monitoring bilateral airflow and subsyringeal air sac pressure, together with the electromyographic activity of expiratory abdominal muscles and vocal output. Activity of expiratory muscles was always present on both sides, regardless of whether song was produced bilaterally or on only one side of the syrinx. The average amplitude of expiratory EMG of one side does not change significantly, even if that side is silent during phonation. The temporal pattern of the electromyogram (EMG) was similar on both sides. Bilateral bursts of EMG activity on both sides accompanied changes in the rate of syringeal airflow, even when these flow fluctuations were generated only by one side of the syrinx. Motor commands to the respiratory muscles therefore appear to be bilaterally distributed, in contrast to the lateralized motor control of the syrinx.  相似文献   

18.
There is a remarkable diversity of song-learning strategies in songbirds. Establishing whether a species is closed- or open-ended is important to be able to interpret functional and evolutionary consequences of variation in repertoire size. Most of our knowledge regarding the timing of vocal learning is based on laboratory studies, despite the fact that these may not always replicate the complex ecological and social interactions experienced by birds in the wild. Given that field studies cannot provide the experimental control of laboratory studies, it may not be surprising that species such as the great tit that were initially assumed to be closed-ended learners have later been suggested to be open-ended learners. By using an established colour-ringed population, by following a standardized recording protocol, and by taking into account the species' song ecology (using only recordings obtained during peak of singing at dawn), we replicated two previous studies to assess song repertoire learning and flexibility in adult wild great tits elicited by social interactions. First, we performed a playback experiment to test repertoire plasticity elicited by novel versus own songs. Additionally, in a longitudinal study, we followed 30 males in two consecutive years and analysed whether new neighbours influenced any change in the repertoire. Contrary to the previous studies, song repertoire size and composition were found to be highly repeatable both between years and after confrontation with a novel song. Our results suggest that great tits are closed-ended learners and that their song repertoire probably does not change during adulthood. Methodological differences that may have led to an underestimation of the repertoires or population differences may explain the discrepancy in results with previous studies. We argue that a rigorous and standardized assessment of the repertoire is essential when studying age- or playback-induced changes in repertoire size and composition under field conditions.  相似文献   

19.
It is known that sleep is connected with sensory isolation of the brain, inactivation of the consciousness and reorganization of the electrical activity in all cerebral cortical areas. On the other hand, sleep deprivation leads to pathology in visceral organs and finally to the death of animals, while there are no obvious changes in the brain itself. It is still unclear how the changes in the brain activity during sleep could be connected with the visceral health. We assumed that the same brain areas and the same neurons that, in wakefulness, process exteroceptive information, switch, during sleep, to the processing of the interoceptive information. Thus, the central nervous system is involved in regulating the life support functions of the body during sleep. The results of our experiments supported this hypothesis, explained many observations obtained in somnology, and offered mechanisms of several pathological states connected with sleep. However, at the present level of the visceral sleep theory, there is no understanding of the well-known link between the emotional reactions of the body and transition from wakefulness to sleep, and sleep quality. In this study, an attempt is undertaken to combine the visceral theory of sleep with the need-informational theory of emotions proposed by P. Simonov. The visceral theory of sleep assumes that in living organisms there is a constant monitoring of the correspondence of the visceral parameters to the genetically determined values. Mismatch signals evoke the feeling of tiredness and the need of sleep. This sleep need enters the competition with other actual needs of the body. In accordance with the theory of Simonov, emotions connected with a particular need play an important role in their ranking for satisfaction. We propose that emotional estimation of the sleep need based on visceral signals occurs in the same brain structures which undertake this estimation for other behavioral needs in wakefulness. During sleep, the same brain structures involved in estimating emotions continue to rank visceral needs and define their order for processing in the cortical areas and in the highest centers of visceral integration. In the context of the proposed hypothesis, we discuss the results of the studies on the link between sleep and emotions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号