首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Kim SH  Xiao S  Shive H  Collins PL  Samal SK 《PloS one》2012,7(4):e34927
Avian paramyxovirus (APMV) serotypes 1-9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus) is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2-9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT) assay in chicken eggs and intracerebral pathogenicity index (ICPI) test in 1-day-old SPF chicks demonstrated that APMV types 2-9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2-9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2-9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent) and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1) and exhibited restricted viral replication of the APMVs (including APMV-1) to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1-9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes.  相似文献   

2.
We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position -1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position -3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens.  相似文献   

3.
To evaluate the role of the F protein cleavage site in the replication and pathogenicity of avian paramyxoviruses (APMVs), we constructed a reverse genetics system for recovery of infectious recombinant APMV-4 from cloned cDNA. The recovered recombinant APMV-4 resembled the biological virus in growth characteristics in vitro and in pathogenicity in vivo. The F cleavage site sequence of APMV-4 (DIQPR↓F) contains a single basic amino acid, at the -1 position. Six mutant APMV-4 viruses were recovered in which the F protein cleavage site was mutated to contain increased numbers of basic amino acids or to mimic the naturally occurring cleavage sites of several paramyxoviruses, including neurovirulent and avirulent strains of NDV. The presence of a glutamine residue at the -3 position was found to be important for mutant virus recovery. In addition, cleavage sites containing the furin protease motif conferred increased replication and syncytium formation in vitro. However, analysis of viral pathogenicity in 9-day-old embryonated chicken eggs, 1-day-old and 2-week-old chickens, and 3-week-old ducks showed that none the F protein cleavage site mutations altered the replication, tropism, and pathogenicity of APMV-4, and no significant differences were observed among the parental and mutant APMV-4 viruses in vivo. Although parental and mutant viruses replicated somewhat better in ducks than in chickens, they all were highly restricted and avirulent in both species. These results suggested that the cleavage site sequence of the F protein is not a limiting determinant of APMV-4 pathogenicity in chickens and ducks.  相似文献   

4.

Background

Avian paramyxoviruses (APMV) consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.

Methodology/Principal Findings

APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt) long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3′N-P/V/W-M-F-HN-L-5′ with intergenic regions of 4–57 nt. The genome length follows the ‘rule of six’ and contains a 55-nt leader sequence at the 3′end and a 552 nt trailer sequence at the 5′ end. The phosphoprotein (P) gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R↓F) conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.

Conclusions/Significance

Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2–9. The availability of sequence information for all known APMV serotypes will facilitate studies in epidemiology and vaccinology.  相似文献   

5.
Avian paramyxoviruses (APMV) serotypes 1–9 are frequently isolated from domestic and wild birds worldwide. APMV-1 (also called Newcastle disease virus, NDV) is attenuated in non-human primates and is being developed as a candidate human vaccine vector. The vector potential of the other serotypes was unknown. In the present study, we evaluated nine different biologically- or recombinantly-derived APMV strains for the ability to replicate and cause disease in rhesus macaque model. Five of the viruses were: biologically-derived wild type (wt) APMV-2, -3, -5, -7 and -9. Another virus was a recombinant (r) version of wt APMV-4. The remaining three viruses were versions of wt rAPMV-2, -4 and -7 in which the F cleavage site had been modified to be multi-basic. Rhesus macaques were inoculated intranasally and intratracheally and monitored for clinical disease, virus shedding from the upper and lower respiratory tract, and seroconversion. Virus shedding was not detected for wt APMV-5. Very limited shedding was detected for wt rAPMV-4 and modified rAPMV-4, and only in a subset of animals. Shedding by the other viruses was detected in every infected animal, and usually from both the upper and lower respiratory tract. In particular, shedding over a number of days in every animal was observed for modified rAPMV-2, wt APMV-7, and modified rAPMV-7. Modification of the F protein cleavage site appeared to increase shedding by wt rAPMV-2 and marginally by wt rAPMV-4. All APMVs except wt APMV-5 induced a virus-specific serum antibody response in all infected animals. None of the animals exhibited any clinical disease signs. These results indicate that APMVs 2, 3, 4, 7, and 9 are competent to infect non-human primates, but are moderately-to-highly restricted, depending on the serotype. This suggests that they are not likely to significantly infect primates in nature, and represent promising attenuated candidates for vector development.  相似文献   

6.
新城疫是危害养禽业发展的重要传染病.新城疫病毒(NDV)具有高度传染性和高致病性,融合蛋白(F)的F1/F2裂解位点存在多个碱性氨基酸并由此形成的泛组织嗜性一直以来被认为是NDV致病的主要决定因素.本研究利用已经构建NDV弱毒LaSota疫苗株反向遗传操作平台,将LaSota病毒F蛋白的碱裂解位点由GGRQGR↓L分别突变为GRRQRR↓F和GRRQRR↓L,在未加入TPCK胰酶的情况下分别成功拯救出突变修饰LaSota疫苗病毒株rL-FmF和rL-FmL,通过测定鸡胚平均致死时间(MDT)、脑内致病指数(ICPI)和静脉内致病指数(IVPI)等指标对其毒力进行评估,结果rL-FmF和rL-FmL,的ICPI值由LaSota的0.36分别上升为1.18和1.05,但.MDT均大于90小时,IVPI仍然均为0,表明碱裂解位点的突变可显著增强致病力.为了检测外源基因插入对病毒致病力的影响,进一步以rL-FmF为载体,分别构建并拯救出表达H5亚型禽流感病毒血凝素HA和增强绿色荧光蛋白EGFP基因的重组病毒rL-FmF-HA和rL-FmF-EGFP,经测定ICPI分别为0.67和1.10,但MDT均大于90小时,IVPI仍然均为0.结果表明,对rLaSota病毒F蛋白裂解位点2个非碱性氨基酸突变为碱性氨基酸,无论F2蛋白氨基端为F或L,均可显著增强其脑内接种致病力,接近中发型毒株标准,但对静脉内接种致病能力均无显著影响,而对鸡胚致死能力均保持rIaSota病毒缓发型特点(MDT≥90);外源基因的重组、表达可不同程度致弱病毒,其致弱程度与外源基因及其表达产物性质有关.结果提示,影响NDV致病力不仅仅局限于F蛋白裂解位点氨基酸序列;通过F裂解位点修饰及HA基因插入可以获得致病力较高但基本接近缓发型标准的重组病毒.  相似文献   

7.
Virulent and moderately virulent strains of Newcastle disease virus (NDV), representing avian paramyxovirus serotype 1 (APMV-1), cause respiratory and neurological disease in chickens and other species of birds. In contrast, APMV-2 is avirulent in chickens. We investigated the role of the fusion (F) and hemagglutinin-neuraminidase (HN) envelope glycoproteins in these contrasting phenotypes by designing chimeric viruses in which the F and HN glycoproteins or their ectodomains were exchanged individually or together between the moderately virulent, neurotropic NDV strain Beaudette C (BC) and the avirulent APMV-2 strain Yucaipa. When we attempted to exchange the complete F and HN glycoproteins individually and together between the two viruses, the only construct that could be recovered was recombinant APMV-2 strain Yucaipa (rAPMV-2), containing the NDV F glycoprotein in place of its own. This substitution of NDV F into APMV-2 was sufficient to confer the neurotropic, neuroinvasive, and neurovirulent phenotypes, in spite of all being at reduced levels compared to what was seen for NDV-BC. When the ectodomains of F and HN were exchanged individually and together, two constructs could be recovered: NDV, containing both the F and HN ectodomains of APMV-2; and APMV-2, containing both ectodomains of NDV. This supported the idea that homologous cytoplasmic tails and matched F and HN ectodomains are important for virus replication. Analysis of these viruses for replication in vitro, syncytium formation, mean embryo death time, intracerebral pathogenicity index, and replication and tropism in 1-day-old chicks and 2-week-old chickens showed that the two contrasting phenotypes of NDV and APMV-2 could largely be transferred between the two backbones by transfer of homotypic F and HN ectodomains. Further analysis provided evidence that the homologous stalk domain of NDV HN is essential for virus replication, while the globular head domain of NDV HN could be replaced with that of APMV-2 with only a minimal attenuating effect. These results demonstrate that the F and HN ectodomains together determine the cell fusion, tropism, and virulence phenotypes of NDV and APMV-2 and that the regions of HN that are critical to replication and the species-specific phenotypes include the cytoplasmic tail and stalk domain but not the globular head domain.  相似文献   

8.
To obtain direct evidence for a relationship between hemagglutinin (HA) cleavability and the virulence of avian influenza A viruses, we generated a series of HA cleavage mutants from a virulent virus, A/turkey/Ontario/7732/66 (H5N9), by reverse genetics. A transfectant virus containing the wild-type HA with R-R-R-K-K-R at the cleavage site, which was readily cleaved by endogenous proteases in chicken embryo fibroblasts (CEF), was highly virulent in intramuscularly or intranasally/orally inoculated chickens. By contrast, a mutant containing the HA with an avirulent-like sequence (R-E-T-R) at the cleavage site, which was not cleaved by the proteases in CEF, was avirulent in chickens, indicating that a genetic alteration confined to the HA cleavage site can affect cleavability and virulence. Mutant viruses with HA cleavage site sequences of T-R-R-K-K-R or T-T-R-K-K-R were as virulent as viruses with the wild-type HA, whereas a mutant with a two-amino-acid deletion but retention of four consecutive basic residues (R-K-K-R) was as avirulent as a virus with the avirulent-type HA. Interestingly, although a mutant containing an HA with R-R-R-K-T-R, which has reduced cleavability in CEF, was as virulent as viruses with high HA cleavability when given intramuscularly, it was less virulent when given intranasally/orally. We conclude that the degree of HA cleavability in CEF predicts the virulence of avian influenza viruses.  相似文献   

9.
Newcastle disease virus exhibits a wide range of pathogenicity and virulence which, as with all paramyxoviruses, is directly related to the cleavability of a precursor (F0) of the fusion glycoprotein by cellular proteases. Sequence analyses of the cleavage site of several virulent and avirulent isolates of the Newcastle disease virus serotype reveal a correlation between virulence or pathogenicity and a high content of basic amino acid residues at the cleavage site. A similar correlation has been seen for other paramyxoviruses.  相似文献   

10.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

11.
Newcastle disease virus (NDV), also designated as Avian paramyxovirus type 1 (APMV-1), is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F) is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic), intermediate (mesogenic) and low (lentogenic) virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1) isolate with an intracerebral pathogenicity index (ICPI) of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.  相似文献   

12.
Virulent strains of Newcastle disease virus (NDV) can cause devastating disease in chickens worldwide. Although the current vaccines are substantially effective, they do not completely prevent infection, virus shedding and disease. To produce genotype-matched vaccines, a full-genome reverse genetics system has been used to generate a recombinant virus in which the F protein cleavage site has been changed to that of avirulent vaccine virus. In the other strategy, the vaccines have been generated by replacing the F and HN genes of a commercial vaccine strain with those from a genotype-matched virus. However, the protective efficacy of a chimeric virus vaccine has not been directly compared with that of a full-genome virus vaccine developed by reverse genetics. Therefore, in this study, we evaluated the protective efficacy of genotype VII matched chimeric vaccines by generating three recombinant viruses based on avirulent LaSota (genotype II) strain in which the open reading frames (ORFs) encoding the F and HN proteins were replaced, individually or together, with those of the circulating and highly virulent Indonesian NDV strain Ban/010. The cleavage site of the Ban/010 F protein was mutated to the avirulent motif found in strain LaSota. In vitro growth characteristics and a pathogenicity test indicated that all three chimeric viruses retained the highly attenuated phenotype of the parental viruses. Immunization of chickens with chimeric and full-length genome VII vaccines followed by challenge with virulent Ban/010 or Texas GB (genotype II) virus demonstrated protection against clinical disease and death. However, only those chickens immunized with chimeric rLaSota expressing the F or F plus HN proteins of the Indonesian strain were efficiently protected against shedding of Ban/010 virus. Our findings showed that genotype-matched vaccines can provide protection to chickens by efficiently preventing spread of virus, primarily due to the F protein.  相似文献   

13.
Despite the existence of 10 avian paramyxovirus (APMV) serotypes, very little is known about the distribution, host species, and ecological factors affecting virus transmission. To better understand the relationship among these factors, we conducted APMV wild bird surveillance in regions of Ukraine suspected of being intercontinental (north to south and east to west) flyways. Surveillance for APMV was conducted in 6,735 wild birds representing 86 species and 8 different orders during 2006 to 2011 through different seasons. Twenty viruses were isolated and subsequently identified as APMV-1 (n = 9), APMV-4 (n = 4), APMV-6 (n = 3), and APMV-7 (n = 4). The highest isolation rate occurred during the autumn migration (0.61%), with viruses isolated from mallards, teals, dunlins, and a wigeon. The rate of isolation was lower during winter (December to March) (0.32%), with viruses isolated from ruddy shelducks, mallards, white-fronted geese, and a starling. During spring migration, nesting, and postnesting (April to August) no APMV strains were isolated out of 1,984 samples tested. Sequencing and phylogenetic analysis of four APMV-1 and two APMV-4 viruses showed that one APMV-1 virus belonging to class 1 was epidemiologically linked to viruses from China, three class II APMV-1 viruses were epidemiologically connected with viruses from Nigeria and Luxembourg, and one APMV-4 virus was related to goose viruses from Egypt. In summary, we have identified the wild bird species most likely to be infected with APMV, and our data support possible intercontinental transmission of APMVs by wild birds.  相似文献   

14.
Newcastle disease virus (NDV) belongs to serotype 1 of the avian paramyxoviruses (APMV-1) and causes severe disease in chickens. Current live attenuated NDV vaccines are not fully satisfactory. An alternative is to use a viral vector vaccine that infects chickens but does not cause disease. APMV serotype 3 infects a wide variety of avian species but does not cause any apparent disease in chickens. In this study, we constructed a reverse-genetics system for recovery of infectious APMV-3 strain Netherlands from cloned cDNAs. Two recombinant viruses, rAPMV3-F and rAPMV3-HN, were generated expressing the NDV fusion (F) and hemagglutinin-neuraminidase (HN) proteins, respectively, from added genes. These viruses were used to immunize 2-week-old chickens by the oculonasal route in order to evaluate the contribution of each protein to the induction of NDV-specific neutralizing antibodies and protective immunity. Each virus induced high titers of NDV-specific hemagglutination inhibition and serum neutralizing antibodies, but the response to F protein was greater. Protective immunity was evaluated by challenging the immunized birds 21 days later with virulent NDV via the oculonasal, intramuscular, or intravenous route. With oculonasal or intramuscular challenge, all three recombinant viruses (rAPMV3, rAPMV3-F, and rAPMV3-HN) were protective, while all unvaccinated birds succumbed to death. These results indicated that rAPMV3 alone can provide cross-protection against NDV challenge. However, with intravenous challenge, birds immunized with rAPMV3 were not protected, whereas birds immunized with rAPMV3-F alone or in combination with rAPMV3-HN were completely protected, and birds immunized with rAPMV3-HN alone were partially protected. These results indicate that the NDV F and HN proteins are independent neutralization and protective antigens, but the contribution by F is greater. rAMPV3 represents an avirulent vaccine vector that can be used against NDV and other poultry pathogens.  相似文献   

15.
The nine serotypes of avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds worldwide. APMV-1, also called Newcastle disease virus, was shown to be attenuated in non-avian species and is being developed as a potential vector for human vaccines. In the present study, we extended this evaluation to the other eight serotypes by evaluating infection in BALB/c mice. Mice were inoculated intranasally with a prototype strain of each of the nine serotypes and monitored for clinical disease, gross pathology, histopathology, virus replication and viral antigen distribution, and seroconversion. On the basis of multiple criteria, each of the APMV serotypes except serotype 5 was found to replicate in mice. Five of the serotypes produced clinical disease and significant weight loss in the following order of severity: 1, 2>6, 9>7. However, disease was short-lived. The other serotypes produced no evident clinical disease. Replication of all of the APMVs except APMV-5 in the nasal turbinates and lungs was confirmed by the recovery of infectious virus and by substantial expression of viral antigen in the epithelial lining detected by immunohistochemistry. Trace levels of infectious APMV-4 and -9 were detected in the brain of some animals; otherwise, no virus was detected in the brain, small intestine, kidney, or spleen. Histologically, infection with the APMVs resulted in lung lesions consistent with broncho-interstitial pneumonia of varying severity that were completely resolved at 14 days post infection. All of the mice infected with the APMVs except APMV-5 produced serotype-specific HI serum antibodies, confirming a lack of replication of APMV-5. Taken together, these results demonstrate that all APMV serotypes except APMV-5 are capable of replicating in mice with minimal disease and pathology.  相似文献   

16.
Y Kawaoka 《Journal of virology》1991,65(3):1195-1201
The cleavability of the hemagglutinin (HA) molecule is related to the virulence of avian influenza A viruses, but its influence on human influenza virus strains is unknown. Two structural features are involved in the cleavage of avian influenza A virus HAs: a series of basic amino acids at the cleavage site and an oligosaccharide side chain in the near vicinity. The importance of these properties in the cleavability of a human influenza A virus (A/Aichi/2/68) HA was investigated by using mutants that contained or lacked an oligosaccharide side chain and had either four or six basic amino acids. All mutants except the one that contains a single mutation at the glycosylation site were cleaved, although not completely, demonstrating that a series of basic amino acids confers susceptibility to cellular cleavage enzymes among human influenza virus HAs. The mutants containing six basic amino acids at the cleavage site showed limited polykaryon formation upon exposure to low pH, indicating that cleavage was adequate to impart fusion activity to the HA. Deletion of the potential glycosylation site had no effect on the cleavability of these mutants; hence, the oligosaccharide side chain appears to have no role in human influenza virus HA cleavage. The inability to induce high cleavability in a human influenza A virus HA by insertion of a series of basic amino acids at the cleavage site indicates that other, as yet unidentified structural features are needed to enhance the susceptibility of these HAs to cellular proteases.  相似文献   

17.
The fusion (F) protein of human parainfluenza virus type 3 contains the tribasic cleavage site R-T-K-R, which was altered by site-directed mutagenesis. Wild-type F protein and various mutants were expressed by recombinant vaccinia viruses. The endogenous endoprotease present in CV-1 cells cleaves F variants containing the furin recognition motif R-X-K/R-R but not variants containing the dibasic site K-R or a single R at the cleavage site. A similar cleavage pattern was obtained when the subtilisin-like endoproteases Kex2 and furin were coexpressed with the wild type and mutants of the F protein. Peptidylchloromethylketone inhibitors mimicking basic cleavage sites prevent cleavage of the precursor Fo by the endogenous protease only when the furin-specific motif is present in the peptidyl portion. The data support the concept that furin is a cellular protease responsible for the activation of the F protein of human parainfluenza virus type 3.  相似文献   

18.
S Q Li  M Orlich    R Rott 《Journal of virology》1990,64(7):3297-3303
Influenza virus A/seal/Mass/1/80 (H7N7) was adapted to grow in MDCK cells and chicken embryo cells (CEC) in the absence of exogenous protease. The biological properties of the virus variants obtained coincided with intracellular activation of the hemagglutinin (HA) by posttranslational proteolytic cleavage and depended on the cell type used for adaptation. MDCK cell-adapted variants contained point mutations in regions of the HA more distant from the cleavage site. It is proposed that these mutations are probably responsible, through an unknown mechanism, for enhanced cleavability of HA in MDCK cells. Such virus variants were apathogenic in chickens. CEC-adapted variants, on the other hand, contained an insertion of basic amino acids at the HA cleavage site, in addition to scattered point mutations. The insertions converted the cleavage sites in the variant virus HAs so that they came to resemble the cleavage site found in highly pathogenic avian influenza viruses. CEC variants with such cleavage site modifications were highly pathogenic for chickens. The lethal outcome of the infection in chickens demonstrated for the first time that an influenza virus derived from a mammalian species can be modified during adaptation to a new cell type to such an extent that the resulting virus variant becomes pathogenic for an avian species.  相似文献   

19.
The host protease TMPRSS2 plays an essential role in proteolytic activation of the influenza A virus (IAV) hemagglutinin (HA) protein possessing a monobasic cleavage site. However, after passages in TMPRSS2 knockout mice, an H3N2 subtype IAV began to undergo cleavage activation of HA, showing high virulence in the mice due to the loss of an oligosaccharide at position 8 in the HA stalk region. Thus, the H3N2 IAV acquired cleavability by an alternative HA activation mechanism/protease(s).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号