首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

2.
The virion host shutoff protein (vhs) of herpes simplex virus triggers accelerated degradation of cellular and viral mRNAs while sparing other cytoplasmic RNA species. Previous work has shown that vhs forms a complex with translation initiation factor eIF4H, which displays detectable RNase activity in the absence of other viral or host proteins. However, the contributions of eIF4H and other host factors to the activity and mRNA targeting properties of vhs have not yet been directly examined. An earlier report from our laboratory demonstrated that rabbit reticulocyte lysate (RRL) contains one or more factors that strongly stimulate the RNase activity of vhs produced in Saccharomyces cerevisiae. We report here that such yeast extracts display significant vhs-dependent RNase activity in the absence of mammalian factors. This activity differs from that displayed by vhs generated in RRL in that it is not targeted to the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). Activity was strongly enhanced by the addition of RRL, eIF4H, or the related translation factor eIF4B. RRL also reconstituted strong targeting to the EMCV IRES, resulting in a major change in the RNA cleavage pattern. In contrast, eIF4H and eIF4B did not reconstitute IRES-directed targeting. These data indicate that eIF4B and 4H stimulate the nuclease activity of vhs, and they provide evidence that additional mammalian factors are required for targeting to the EMCV IRES.  相似文献   

3.
4.
Herpes simplex virus virion host shutoff function.   总被引:42,自引:33,他引:9       下载免费PDF全文
  相似文献   

5.
6.
The herpes simplex virus virion host shutoff function.   总被引:14,自引:11,他引:3       下载免费PDF全文
The virion host shutoff (vhs) function of herpes simplex virus (HSV) limits the expression of genes in the infected cells by destabilizing both host and viral mRNAs. vhs function mutants have been isolated which are defective in their ability to degrade host mRNA. Furthermore, the half-life of viral mRNAs is significantly longer in cells infected with the vhs-1 mutant virus than in cells infected with the wild-type (wt) virus. Recent data have shown that the vhs-1 mutation resides within the open reading frame UL41. We have analyzed the shutoff of host protein synthesis in cells infected with a mixture of the wt HSV-1 (KOS) and the vhs-1 mutant virus. The results of these experiments revealed that (i) the wt virus shutoff activity requires a threshold level of input virions per cell and (ii) the mutant vhs-1 virus protein can irreversibly block the wt virus shutoff activity. These results are consistent with a stoichiometric model in which the wt vhs protein interacts with a cellular factor which controls the half-life of cell mRNA. This wt virus interaction results in the destabilization of both host and viral mRNAs. In contrast, the mutant vhs function interacts with the cellular factor irreversibly, resulting in the increased half-life of both host and viral mRNAs.  相似文献   

7.
8.
Development of an efficient cell-free translation system from mammalian cells is an important goal. We examined whether supplementation of HeLa cell extracts with any translation initiation factor or translational regulator could enhance protein synthesis. eIF2 (eukaryotic translation initiation factor 2) and eIF2B augmented translation of capped, uncapped and encephalomyocarditis virus-internal ribosome entry site-promoted mRNAs. eIF4E specifically stimulated capped mRNA translation, while p97, a homologue to the C-terminal two-thirds of eIF4G, increased uncapped mRNA translation. When the HeLa cell extract was supplemented with a combination of eIF2, eIF2B, and p97, the capacity to synthesize a protein from an uncapped mRNA became comparable to that from the capped counterpart stimulated with a combination of eIF2, eIF2B, and eIF4E. A dialysis method rendered the HeLa cell extract capable of synthesizing proteins for 36h, and the yield was augmented when supplemented with initiation factors. In contrast, the productivity of a rabbit reticulocyte lysate was not enhanced by this method. Collectively, the translation factor-supplemented HeLa cell extract should become an important tool for the production of recombinant proteins.  相似文献   

9.
The herpes simplex virus (HSV) virion host shutoff (Vhs) protein is an endoribonuclease that accelerates decay of many host and viral mRNAs. Purified Vhs does not distinguish mRNAs from nonmessenger RNAs and cuts target RNAs at many sites, yet within infected cells it is targeted to mRNAs and cleaves those mRNAs at preferred sites including, for some, regions of translation initiation. This targeting may result in part from Vhs binding to the translation initiation factor eIF4H; in particular, several mutations in Vhs that abrogate its binding to eIF4H also abolish its mRNA-degradative activity, even though the mutant proteins retain endonuclease activity. To further investigate the role of eIF4H in Vhs activity, HeLa cells were depleted of eIF4H or other proteins by transfection with small interfering RNAs (siRNAs) 48 h prior to infection or mock infection in the presence of actinomycin D. Cellular mRNA levels were then assayed 5 h after infection. In cells transfected with an siRNA for the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase, wild-type HSV infection reduced beta-actin mRNA levels to between 20 and 30% of those in mock-infected cells, indicative of a normal Vhs activity. In contrast, in cells transfected with any of three eIF4H siRNAs, beta-actin mRNA levels were indistinguishable in infected and mock-infected cells, suggesting that eIF4H depletion impeded Vhs-mediated degradation. Depletion of the related factor eIF4B did not affect Vhs activity. The data suggest that eIF4H binding is required for Vhs-induced degradation of many mRNAs, perhaps by targeting Vhs to mRNAs and to preferred sites within mRNAs.  相似文献   

10.
11.
A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation. This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems. HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A) tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving rise to the production of Gag polyprotein.  相似文献   

12.
Initiation is the rate-limiting step in protein synthesis and therefore an important target for regulation. For the initiation of translation of most cellular mRNAs, the cap structure at the 5' end is bound by the translation factor eukaryotic initiation factor 4E (eIF4E), while the poly(A) tail, at the 3' end, is recognized by the poly(A)-binding protein (PABP). eIF4G is a scaffold protein that brings together eIF4E and PABP, causing the circularization of the mRNA that is thought to be important for an efficient initiation of translation. Early in infection, rotaviruses take over the host translation machinery, causing a severe shutoff of cell protein synthesis. Rotavirus mRNAs lack a poly(A) tail but have instead a consensus sequence at their 3' ends that is bound by the viral nonstructural protein NSP3, which also interacts with eIF4GI, using the same region employed by PABP. It is widely believed that these interactions lead to the translation of rotaviral mRNAs, impairing at the same time the translation of cellular mRNAs. In this work, the expression of NSP3 in infected cells was knocked down using RNA interference. Unexpectedly, under these conditions the synthesis of viral proteins was not decreased, while the cellular protein synthesis was restored. Also, the yield of viral progeny increased, which correlated with an increased synthesis of viral RNA. Silencing the expression of eIF4GI further confirmed that the interaction between eIF4GI and NSP3 is not required for viral protein synthesis. These results indicate that NSP3 is neither required for the translation of viral mRNAs nor essential for virus replication in cell culture.  相似文献   

13.
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.  相似文献   

14.
15.
16.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

17.
18.
19.
We have previously shown that the porcine alphaherpesvirus pseudorabies virus (PRV) efficiently interferes with phosphorylation of the eukaryotic translation initiation factor eIF2α. Inhibition of phosphorylation of eIF2α has been reported earlier for the closely related alphaherpesvirus herpes simplex virus 1 (HSV-1) through its ICP34.5 and US11 proteins. PRV, however, does not encode an ICP34.5 or US11 orthologue. Assays using cycloheximide, UV-inactivated PRV, or phosphonoacetic acid (PAA) showed that de novo expression of one or more (immediate) early viral protein(s) is required for interference with eIF2α phosphorylation. In line with this, a time course assay showed that eIF2α phosphorylation was abolished within 2 h after PRV inoculation. PRV encodes only one immediate-early protein, IE180, the orthologue of HSV-1 ICP4. As reported earlier, a combinational treatment of cells with cycloheximide and actinomycin D allowed expression of IE180 without detectable expression of the US3 early protein in PRV-infected cells. This led to a substantial reduction in eIF2α phosphorylation levels, indicative for an involvement of IE180. In support of this, transfection of IE180 also potently reduced eIF2α phosphorylation. IE180-mediated interference with eIF2α phosphorylation was not cell type dependent, as it occurred both in rat neuronal 50B11 cells and in swine testicle cells. Inhibition of the cellular phosphatase PP1 impaired PRV-mediated interference with eIF2α phosphorylation, indicating that PP1 is involved in this process. In conclusion, the immediate-early IE180 protein of PRV has the previously uncharacterized ability to suppress phosphorylation levels of the eukaryotic translation initiation factor eIF2α.  相似文献   

20.
Influenza virus mRNAs bear a short capped oligonucleotide sequence at their 5' ends derived from the host cell pre-mRNAs by a "cap-snatching" mechanism, followed immediately by a common viral sequence. At their 3' ends, they contain a poly(A) tail. Although cellular and viral mRNAs are structurally similar, influenza virus promotes the selective translation of its mRNAs despite the inhibition of host cell protein synthesis. The viral polymerase performs the cap snatching and binds selectively to the 5' common viral sequence. As viral mRNAs are recognized by their own cap-binding complex, we tested whether viral mRNA translation occurs without the contribution of the eIF4E protein, the cellular factor required for cap-dependent translation. Here, we show that influenza virus infection proceeds normally in different situations of functional impairment of the eIF4E factor. In addition, influenza virus polymerase binds to translation preinitiation complexes, and furthermore, under conditions of decreased eIF4GI association to cap structures, an increase in eIF4GI binding to these structures was found upon influenza virus infection. This is the first report providing evidence that influenza virus mRNA translation proceeds independently of a fully active translation initiation factor (eIF4E). The data reported are in agreement with a role of viral polymerase as a substitute for the eIF4E factor for viral mRNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号