首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Key aspects of seed development in flowering plants are held to be under epigenetic control and to have evolved as a result of conflict between the interests of the male and female gametes (kinship theory). Attempts to identify the genes involved have focused on imprinted sequences, although imprinting is only one mechanism by which male or female parental alleles may be exclusively expressed immediately post-fertilization. We have studied the expression of a subset of endosperm gene classes immediately following interploidy crosses in maize and show that departure from the normal 2 : 1 ratio between female and male genomes exerts a dramatic effect on the timing of expression of some, but not all, genes investigated. Paternal genomic excess prolongs the expression of early genes and delays accumulation of reserves, while maternal genomic excess foreshortens the expression period of early genes and dramatically brings forward endosperm maturation. Our data point to a striking interdependence between the phases of endosperm development, and are consonant with previous work from maize showing progression from cell proliferation to endoreduplication is regulated by the balance between maternal and paternal genomes, and from Arabidopsis suggesting that this ‘phasing’ is regulated by maternally expressed imprinted genes. Our findings are discussed in context of the kinship theory.  相似文献   

3.
Auxin transport in maize roots in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Liu J  An X  Cheng L  Chen F  Bao J  Yuan L  Zhang F  Mi G 《Annals of botany》2010,106(6):1019-1026

Background and Aims

Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.

Methods

Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.

Key Results

Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.

Conclusions

It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth.  相似文献   

4.
5.
Maize is a monoecious species that produces imperfect (unisexual), highly derived flowers called florets. Within the spikelet, the basic repeating unit of the maize inflorescence, the spikelet meristem gives rise to an upper and a lower floret. Although initially bisexual, floret unisexuality is established through selective organ elimination. In addition, the lower floret of each ear spikelet is aborted early in its development, leaving the upper floret to mature as the only pistillate floret. Expression from the cytokinin-synthesizing isopentenyl transferase (IPT) enzyme under the control of the Arabidopsis senescence-inducible promoter SAG (senescence associated gene)12 was observed during early maize floret development. Moreover, the lower floret was rescued from abortion, resulting in two functional florets per spikelet. The pistil in each floret was fertile, but the spikelet produced just one kernel composed of a fused endosperm with two viable embryos. The two embryos were genetically distinct, indicating that they had arisen from independent fertilization events. These results suggest that cytokinin can determine pistil cell fate during maize floret development.  相似文献   

6.
Development of a Brazilian maize core collection   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate methods for developing a Brazilian maize core collection. For an initial survey of the active collection, passport information, as well as characterization and evaluation of accessions, were taken into consideration, these then being divided according to geographic region and kernel-type. Multiple sampling methods were evaluated. The strategy of constant sampling generated extensive alterations in extract accession frequency. The multivariate strategy with dispersion graphs and principal components associated with the Tocher method was considered efficient for identifying the most divergent genotypes. The multivariate strategy generated greater alterations in the variance of traits. The average number of traits revealed few modifications with the various sampling strategies used. Therefore, the active collection could be considered as possessing a satisfactory amount of information for most of its accessions. Moreover, the multivariate strategy generated modifications in the variance of the traits, independent of sampling intensity.  相似文献   

7.
Root cortical burden influences drought tolerance in maize   总被引:1,自引:0,他引:1  

Background and Aims

Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter.

Methods

RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms.

Key Results

Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance.

Conclusions

The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil.  相似文献   

8.
We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplication in developing maize caryopsis of a cell wall invertase-deficient miniature1 ( mn1 ) seed mutant and its wild type, Mn1 , genotype. Both genotypes showed extremely high levels of total cytokinins during the very early stages of development, followed by a marked and genotype specific reduction. While the decrease of cytokinins in Mn1 was associated with their deactivation by 9-glucosylation, the absolute and the relative part of active cytokinin forms was higher in the mutant. During the exponential growth phase of endosperm between 6 d after pollination and 9 d after pollination, the mean cell doubling time, the absolute growth rate and the level of endoreduplication were similar in the two genotypes. However, the entire duration of growth was longer in Mn1 compared with mn1 , resulting in a significantly higher cell number in the Mn1 endosperm. These data correlate with the previously reported peak levels of the Mn1 -encoded cell wall invertase-2 (INCW2) at 12 d after pollination in the Mn1 endosperm. A model showing possible crosstalk among cytokinins, cell cycle and cell wall invertase as causal to increased cell number and sink strength of the Mn1 developing endosperm is discussed.  相似文献   

9.

Background and Aims

The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth.

Methods

Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed.

Key Results

Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ∼30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and proton extrusion were also determined. TEA-Cl, added 1 h before IAA, caused reduction of growth by 49·9 % and inhibition of proton extrusion.

Conclusions

These results suggest that Cl plays a role in the IAA-induced growth of maize coleoptile segments. A possible mechanism for Cl uptake during IAA-induced growth is proposed in which uptake of K+ and Cl ions in concert with IAA-induced plasma membrane H+-ATPase activity changes the membrane potential to a value needed for turgor adjustment during the growth of maize coleoptile cells.  相似文献   

10.
Three O-methyltransferases (BX10a, b, c) catalyze the conversion of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) to 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize (Zea mays). Variation in benzoxazinoid accumulation and resistance to Rhopalosiphum maidis (corn leaf aphid) was attributed to a natural CACTA family transposon insertion that inactivates Bx10c. Whereas maize inbred line B73 has this transposon insertion, line CML277 does not. To characterize the phenotypic effects of DIMBOA-Glc methyltransferase activity, we created near-isogenic lines derived from B73 and CML277 that do or do not contain the transposon insertion. Bx10c inactivation causes high DIMBOA-Glc, low HDMBOA-Glc, and decreased aphid reproduction relative to near-isogenic lines that have a functional Bx10c gene. These results confirm the importance of this locus in maize aphid resistance. The availability of Bx10c near-isogenic lines will facilitate further research on the function of different benzoxazinoids and DIMBOA-Glc methyltransferase activity in maize defense against herbivores and pathogens.  相似文献   

11.

Background and Aims

Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA.

Methods

In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences.

Key Results

In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes.

Conclusions

The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.  相似文献   

12.
13.
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.  相似文献   

14.

Background and Aims

Plant cell enlargement is unambiguously coupled to changes in cell wall architecture, and as such various studies have examined the modification of the proportions and structures of glucuronoarabinoxylan and mixed-linkage glucan in the course of cell elongation in grasses. However, there is still no clear understanding of the mutual arrangement of these matrix polymers with cellulose microfibrils and of the modification of this architecture during cell growth. This study aimed to determine the correspondence between the fine structure of grass cell walls and the course of the elongation process in roots of maize (Zea mays).

Methods

Enzymatic hydrolysis followed by biochemical analysis of derivatives was coupled with immunohistochemical detection of cell wall epitopes at different stages of cell development in a series of maize root zones.

Key Results

Two xylan-directed antibodies (LM11 and ABX) have distinct patterns of primary cell wall labelling in cross-sections of growing maize roots. The LM11 epitopes were masked by mixed-linkage glucan and were revealed only after lichenase treatment. They could be removed from the section by xylanase treatment. Accessibility of ABX epitopes was not affected by the lichenase treatment. Xylanase treatment released only part of the cell wall glucuronoarabinoxylan and produced two types of products: high-substituted (released in polymeric form) and low-substituted (released as low-molecular-mass fragments). The amount of the latter was highly correlated with the amount of mixed-linkage glucan.

Conclusions

Three domains of glucuronoarabinoxylan were determined: one separating cellulose microfibrils, one interacting with them and a middle domain between the two, which links them. The middle domain is masked by the mixed-linkage glucan. A model is proposed in which the mixed-linkage glucan serves as a gel-like filler of the space between the separating domain of the glucuronoarabinoxylan and the cellulose microfibrils. Space for glucan is provided along the middle domain, the proportion of which increases during cell elongation.  相似文献   

15.
The central carbohydrate metabolism provides the precursors for the syntheses of various storage products in seeds. While the underlying biochemical map is well established, little is known about the organization and flexibility of carbohydrate metabolic fluxes in the face of changing biosynthetic demands or other perturbations. This question was addressed in developing kernels of maize (Zea mays L.), a model system for the study of starch and sugar metabolism. 13C-labeling experiments were carried out with inbred lines, heterotic hybrids, and starch-deficient mutants that were selected to cover a wide range of performances and kernel phenotypes. In total, 46 labeling experiments were carried out using either [U-13C6]glucose or [U-13C12]sucrose and up to three stages of kernel development. Carbohydrate flux distributions were estimated based on glucose isotopologue abundances, which were determined in hydrolysates of starch by using quantitative 13C-NMR and GC-MS. Similar labeling patterns in all samples indicated robustness of carbohydrate fluxes in maize endosperm, and fluxes were rather stable in response to glucose or sucrose feeding and during development. A lack of ADP-glucose pyrophosphorylase in the bt2 and sh2 mutants triggered significantly increased hexose cycling. In contrast, other mutations with similar kernel phenotypes had no effect. Thus, the distribution of carbohydrate fluxes is stable and not determined by sink strength in maize kernels.  相似文献   

16.
Sterols from free sterol and steryl ester fractions from Heterodera zeae and from total lipids of Zea mays roots were analyzed by gas-liquid chromatography (GLC) and by GLC-mass spectrometry. The major free sterols of H. zeae were 24-ethylcholesterol (54.4% of total free sterol), 24-ethylcholesta-5,22-dien-3β-ol (13.3%), 24-methylcholesterol (12.5%), and cholesterol (7.2%). The same four sterols comprised 34.6%, 7.2%, 30.3%, and 18.6%, respectively, of the esterified sterols of H. zeae. Corn root sterols included 46.6% 24-ethylcholesta-5,22-dien-3β-ol, 16.7% methylcholesterol, 16.4% cycloartenol, 12.7% 24-ethylcholesterol, and 0.5% cholesterol. The sterol 24-composition of H. zeae differed greatly from that of the only other cyst nematode previously investigated, Globodera solanacearum.  相似文献   

17.
We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplicaUon in developing maize caryopsis of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. Both genotypes showed extremely high levels of total cytokinins during the very early stages of development, followed by a marked and genotype specific reduction. While the decrease of cytokinins in Mn1 was associated with their deactivation by 9-glucosylation, the absolute and the relative part of active cytokinin forms was higher in the mutant. During the exponential growth phase of endosperm between 6 d after pollination and 9 d after pollination, the mean cell doubling time, the absolute growth rate and the level of endoreduplication were similar in the two genotypes. However, the entire duration of growth was longer in Mnl compared with mnl, resulting in a significantly higher cell number in the Mnl endosperm. These data correlate with the previously reported peak levels of the Mn1-encoded cell wall invertase-2 (INCW2) at 12 d after pollination in the Mn1 endosperm. A model showing possible crosstalk among cytokinins, cell cycle and cell wall invertase as causal to increased cell number and sink strength of the Mn1 developing endosperm is discussed.  相似文献   

18.
Jie Wu  Yan Guo 《Annals of botany》2014,114(4):841-851

Background and Aims

A number of techniques have recently been developed for studying the root system architecture (RSA) of seedlings grown in various media. In contrast, methods for sampling and analysis of the RSA of field-grown plants, particularly for details of the lateral root components, are generally inadequate.

Methods

An integrated methodology was developed that includes a custom-made root-core sampling system for extracting intact root systems of individual maize plants, a combination of proprietary software and a novel program used for collecting individual RSA information, and software for visualizing the measured individual nodal root architecture.

Key Results

Example experiments show that large root cores can be sampled, and topological and geometrical structure of field-grown maize root systems can be quantified and reconstructed using this method. Second- and higher order laterals are found to contribute substantially to total root number and length. The length of laterals of distinct orders varies significantly. Abundant higher order laterals can arise from a single first-order lateral, and they concentrate in the proximal axile branching zone.

Conclusions

The new method allows more meaningful sampling than conventional methods because of its easily opened, wide corer and sampling machinery, and effective analysis of RSA using the software. This provides a novel technique for quantifying RSA of field-grown maize and also provides a unique evaluation of the contribution of lateral roots. The method also offers valuable potential for parameterization of root architectural models.  相似文献   

19.
Tocotrienols are lipophilic antioxidants belonging to the tocochromanols, better known as vitamin E. Although present in cereal grains in high quantities not much is known about their function in plants. In a detailed study the temporal and spatial accumulation of tocotrienols and tocopherols during grain development in two barley cultivars was analyzed. Tocochromanols and lipids accumulated in parallel until 80% of the final dry weight of the kernels was reached. Later on the tocochromanol content did not change while the lipid content decreased. Generally, only about 13% of the tocochromanols were found in the germ fraction, whereas the pericarp fraction contained about 50% and the endosperm fraction about 37% of the tocochromanols. Altogether, about 85% of the tocochromanols were tocotrienols in both cultivars. In case of the tocopherols about 80% were found in the germ fraction and the remaining 20% in the pericarp fraction. Tocotrienols were almost equally present in the pericarp and the endosperm fraction. Individual forms of tocopherols and tocotrienols accumulated with different kinetics during barley grain development. The differences in distribution and accumulation indicate different functions of the individual tocochromanols during grain development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号