首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cai Z  Liang TJ  Luo G 《Journal of virology》2004,78(7):3633-3643
Replication of nearly all RNA viruses depends on a virus-encoded RNA-dependent RNA polymerase (RdRp). Our earlier work found that purified recombinant hepatitis C virus (HCV) RdRp (NS5B) was able to initiate RNA synthesis de novo by using purine (A and G) but not pyrimidine (C and U) nucleotides (G. Luo et al., J. Virol. 74:851-863, 2000). For most human RNA viruses, the initiation nucleotides of both positive- and negative-strand RNAs were found to be either an adenylate (A) or guanylate (G). To determine the nucleotide used for initiation and control of HCV RNA replication, a genetic mutagenesis analysis of the nucleotides at the very 5' and 3' ends of HCV RNAs was performed by using a cell-based HCV replicon replication system. Either a G or an A at the 5' end of HCV genomic RNA was able to efficiently induce cell colony formation, whereas a nucleotide C at the 5' end dramatically reduced the efficiency of cell colony formation. Likewise, the 3'-end nucleotide U-to-C mutation did not significantly affect the efficiency of cell colony formation. In contrast, a U-to-G mutation at the 3' end caused a remarkable decrease in cell colony formation, and a U-to-A mutation resulted in a complete abolition of cell colony formation. Sequence analysis of the HCV replicon RNAs recovered from G418-resistant Huh7 cells revealed several interesting findings. First, the 5'-end nucleotide G of the replicon RNA was changed to an A upon multiple rounds of replication. Second, the nucleotide A at the 5' end was stably maintained among all replicon RNAs isolated from Huh7 cells transfected with an RNA with a 5'-end A. Third, initiation of HCV RNA replication with a CTP resulted in a >10-fold reduction in the levels of HCV RNAs, suggesting that initiation of RNA replication with CTP was very inefficient. Fourth, the 3'-end nucleotide U-to-C and -G mutations were all reverted back to a wild-type nucleotide U. In addition, extra U and UU residues were identified at the 3' ends of revertants recovered from Huh7 cells transfected with an RNA with a nucleotide G at the 3' end. We also determined the 5'-end nucleotide of positive-strand RNA of some clinical HCV isolates. Either G or A was identified at the 5' end of HCV RNA genome depending on the specific HCV isolate. Collectively, these findings demonstrate that replication of positive-strand HCV RNA was preferentially initiated with purine nucleotides (ATP and GTP), whereas the negative-strand HCV RNA replication is invariably initiated with an ATP.  相似文献   

2.
The mechanisms involved in hepatitis C virus (HCV) RNA replication are unknown, and this aspect of the virus life cycle is not understood. It is thought that virus-encoded nonstructural proteins and RNA genomes interact on rearranged endoplasmic reticulum (ER) membranes to form replication complexes, which are believed to be sites of RNA synthesis. We report that, through the use of an antibody specific for double-stranded RNA (dsRNA), dsRNA is readily detectable in Huh-7 cells that contain replicating HCV JFH-1 genomes but is absent in control cells. Therefore, as that of other RNA virus genomes, the replication of the HCV genome may involve the generation of a dsRNA replicative intermediate. In Huh-7 cells supporting HCV RNA replication, dsRNA was observed as discrete foci, associated with virus-encoded NS5A and core proteins and identical in morphology and distribution to structures containing HCV RNA visualized by fluorescence-based hybridization methods. Three-dimensional reconstruction of deconvolved z-stack images of virus-infected cells provided detailed insight into the relationship among dsRNA foci, NS5A, the ER, and lipid droplets (LDs). This analysis revealed that dsRNA foci were located on the surface of the ER and often surrounded, partially or wholly, by a network of ER-bound NS5A protein. Additionally, virus-induced dsRNA foci were juxtaposed to LDs, attached to the ER. Thus, we report the visualization of HCV-induced dsRNA foci, the likely sites of virus RNA replication, and propose that HCV genome synthesis occurs at LD-associated sites attached to the ER in virus-infected cells.  相似文献   

3.
At least six major genotypes of Hepatitis C virus (HCV) cause liver diseases worldwide.The efficacy rates with current standard of care are about 50% against genotype 1,the most prevalent strain in the...  相似文献   

4.
Nuclear factors are involved in hepatitis C virus RNA replication   总被引:1,自引:0,他引:1  
Unraveling the molecular basis of the life cycle of hepatitis C virus (HCV), a prevalent agent of human liver disease, entails the identification of cell-encoded factors that participate in the replication of the viral RNA genome. This study provides evidence that the so-called NF/NFAR proteins, namely, NF90/NFAR-1, NF110/NFAR-2, NF45, and RNA helicase A (RHA), which mostly belong to the dsRBM protein family, are involved in the HCV RNA replication process. NF/NFAR proteins were shown to specifically bind to replication signals in the HCV genomic 5' and 3' termini and to promote the formation of a looplike structure of the viral RNA. In cells containing replicating HCV RNA, the generally nuclear NF/NFAR proteins accumulate in the cytoplasmic viral replication complexes, and the prototype NFAR protein, NF90/NFAR-1, stably interacts with a viral protein. HCV replication was inhibited in cells where RNAi depleted RHA from the cytoplasm. Likewise, HCV replication was hindered in cells that contained another NF/NFAR protein recruiting virus. The recruitment of NF/NFAR proteins by HCV is assumed to serve two major purposes: to support 5'-3' interactions of the viral RNA for the coordination of viral protein and RNA synthesis and to weaken host-defense mechanisms.  相似文献   

5.
The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is necessary for the replication of viral RNA and thus represents an attractive target for drug development. Several structural classes of nonnucleoside inhibitors (NNIs) of HCV RNA polymerase have been described, including a promising series of benzothiadiazine compounds that efficiently block replication of HCV subgenomic replicons in tissue culture. In this work we report the selection of replicons resistant to inhibition by the benzothiadiazine class of NNIs. Four different single mutations were identified in separate clones, and all four map to the RNA polymerase gene, validating the polymerase as the antiviral target of inhibition. The mutations (M414T, C451R, G558R, and H95R) render the HCV replicons resistant to inhibition by benzothiadiazines, though the mutant replicons remain sensitive to inhibition by other nucleoside and NNIs of the HCV RNA polymerase. Additionally, cross-resistance studies and synergistic inhibition of the enzyme by combinations of a benzimidazole and a benzothiadiazine indicate the existence of nonoverlapping binding sites for these two structural classes of inhibitors.  相似文献   

6.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. Recently, two benzo-1,2,4-thiadiazine compounds were shown to be potent, highly specific inhibitors of the genotype 1b HCV RdRp containing a carboxyl-terminal 21 residue truncation (delta21 HCV RdRp) (Dhanak, D., Duffy, K., Johnston, V. K., Lin-Goerke, J., Darcy, M., Shaw, A. N. G. B., Silverman, C., Gates, A. T., Earnshaw, D. L., Casper, D. J., Kaura, A., Baker, A., Greenwood, C., Gutshall, L. L., Maley, D., DelVecchio, A., Macarron, R., Hofmann, G. A., Alnoah, Z., Cheng, H.-Y., Chan, G., Khandekar, S., Keenan, R. M., and Sarisky, R. T. (2002) J. Biol. Chem. 277, 38322-38327). Compound 4 (C(21)H(21)N(3)O(4)S) reduces viral replication by virtue of its direct interaction with the viral polymerase rather than by nonspecific titration of nucleic acid template. In this study, we present several lines of evidence to demonstrate that this inhibitor interferes with the initiation step of RNA synthesis rather than acting as an elongation inhibitor. Inhibition of initial phosphodiester bond formation occurred regardless of whether replication was initiated by primer-dependent or de novo mechanisms. Filter binding studies using increasing concentrations of compound 4 did not interfere with the ability of delta21 HCV RdRp to interact with nucleic acid. Furthermore, varying the order of reagent addition in the primer extension assay showed no distinct differences in inhibition profile. Finally, surface plasmon resonance analyses provided evidence that a ternary complex is capable of forming between the RNA template, RdRp, and compound 4. Together, these data suggest that this heterocyclic agent interacts with the apoenzyme, as well as with the RNA-bound form of delta21 HCV RdRp, and therefore does not directly interfere with the RdRp-RNA interaction to mediate inhibition.  相似文献   

7.
8.
The factors leading to spontaneous clearance of hepatitis C virus (HCV) or to viral persistence are elusive. Understanding virus-host interactions that enable acute HCV clearance is key to the development of more effective therapeutic and prophylactic strategies. Here, using a sensitive neutralization assay based on infectious HCV pseudoparticles (HCVpp), we have studied the kinetics of humoral responses in a cohort of acute-phase patients infected during a single nosocomial outbreak in a hemodialysis center. The 17 patients were monitored for the spontaneous outcome of HCV infection for 6 months before a treatment decision was made. Blood samples were taken frequently (15 +/- 4 per patient). Phylogenetic analysis of the predominant virus(es) revealed infection by only one of two genotype 1b strains. While all patients seroconverted, their sera induced two opposing effects in HCVpp infection assays: inhibition and facilitation. Furthermore, the ability of sera to facilitate or inhibit infection correlated with the presence of either infecting HCV strain and divided the patients into two groups. In group 1, the progressive emergence of a relatively strong neutralizing response correlated with a fluctuating decrease in high initial viremia, leading to control of viral replication. Patients in group 2 failed to reduce viremia within the acute phase, and no neutralizing responses were detected despite seroconversion. Strikingly, sera of group 2, as well as naive sera, facilitated infection by HCVpp displaying HCV glycoproteins from different genotypes and strains, including those retrieved from patients. These results provide new insights into the mechanisms of viral persistence and immune control of viremia.  相似文献   

9.
Yi M  Lemon SM 《Journal of virology》2003,77(6):3557-3568
We describe a mutational analysis of the 3' nontranslated RNA (3'NTR) signals required for replication of subgenomic hepatitis C virus (HCV) RNAs. A series of deletion mutants was constructed within the background of an HCV-N replicon that induces the expression of secreted alkaline phosphatase in order to examine the requirements for each of the three domains comprising the 3'NTR, namely, the highly conserved 3' terminal 98-nucleotide (nt) segment (3'X), an upstream poly(U)-poly(UC) [poly(U/UC)] tract, and the variable region (VR) located at the 5' end of the 3'NTR. Each of these domains was found to contribute to efficient replication of the viral RNA in transiently transfected hepatoma cells. Replication was not detected when any of the three putative stem-loop structures within the 3'X region were deleted. Similarly, complete deletion of the poly(U/UC) tract abolished replication. Replacement of a minimum of 50 to 62 nt of poly(U/UC) sequence was required for detectable RNA replication when the native sequence was restored in a stepwise fashion from its 3' end. Lengthier poly(U/UC) sequences, and possibly pure homopolymeric poly(U) tracts, were associated with more efficient RNA amplification. Finally, while multiple deletion mutations were tolerated within VR, each led to a partial loss of replication capacity. The impaired replication capacity of the deletion mutants could not be explained by reduced translational activity or by decreased stability of the RNA, suggesting that each of these mutations may impair recognition of the RNA by the viral replicase during an early step in negative-strand RNA synthesis. The results indicate that the 3'-most 150 nt of the HCV-N genome [the 3'X region and the 3' 52 nt of the poly(U/UC) tract] contain RNA signals that are essential for replication, while the remainder of the 3'NTR plays a facilitating role in replication but is not absolutely required.  相似文献   

10.
Studies of the Hepatitis C virus (HCV) replication cycle have been made possible with the development of subgenomic selectable RNAs that replicate autonomously in cultured cells. In these replicons the region encoding the HCV structural proteins was replaced by the neomycin phosphotransferase gene, allowing the selection of transfected cells that support high-level replication of these RNAs. Subsequent analyses revealed that, within selected cells, HCV RNAs had acquired adaptive mutations that increased the efficiency of colony formation by an unknown mechanism. Using a panel of replicons that differed in their degrees of cell culture adaptation, in this study we show that adaptive mutations enhance RNA replication. Transient-transfection assays that did not require selection of transfected cells demonstrated a clear correlation between the level of adaptation and RNA replication. The highest replication level was found with an adapted replicon carrying two amino acid substitutions located in NS3 and one in NS5A that acted synergistically. In contrast, the nonadapted RNA replicated only transiently and at a low level. The correlation between the efficiency of colony formation and RNA replication was corroborated with replicons in which the selectable marker gene was replaced by the gene encoding firefly luciferase. Upon transfection of naive Huh-7 cells, the levels of luciferase activity directly reflected the replication efficiencies of the various replicon RNAs. These results show that cell culture-adaptive mutations enhance HCV RNA replication.  相似文献   

11.
Hepatitis C viral (HCV) RNA includes an internal ribosome entry segment (IRES) that extends some 30 nt into the coding region and promotes internal initiation of translation at the authentic initiation codon at nt 342. The 5'-boundary of this IRES was mapped by in vitro translation and transfection assays and was found to lie between nt 42 and 71. Within these IRES boundaries there are, in most HCV strains, three AUG triplets upstream of the authentic initiation site. Although the first, 5'-proximal, of these is absolutely conserved, a mutational analysis showed that it is not a functional initiation codon. In particular, the G residue could be substituted provided compensatory mutations were made to maintain base pairing. The other two upstream AUGs are not absolutely conserved, and mutation of the third (5'-distal) had little effect on IRES activity. When an additional AUG codon was introduced by single-site mutation just upstream of the authentic initiation codon, it was found to be used when most of the IRES had been deleted to generate an RNA translated by the scanning ribosome mechanism, but was not used in the background of the full-length IRES when internal initiation is operative. These results argue that the IRES promotes direct ribosome entry immediately at, or indeed very close to, the authentic initiation codon, and that the upstream AUGs do not serve as ribosome entry sites.  相似文献   

12.
DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supernatants were suppressed in DDX3 knockdown cells after inoculation of the cell culture-generated HCVcc. Thus, DDX3 is required for HCV RNA replication.  相似文献   

13.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.  相似文献   

14.
15.
Hepatitis C virus (HCV) NS5A has been reported to be important for the establishment of replication by adaptive mutations or localization, although its role in viral replication remains unclear. It was previously reported that NS5A interacts with NS5B via two regions of NS5A in the isolate JK-1 and modulates the activity of NS5B RdRp (Y. Shirota et al., J. Biol. Chem., 277:11149-11155, 2002), but the biological significance of this interaction has not been determined. In this study, we addressed the effect of this interaction on HCV RNA replication with an HCV replicon system derived from the isolate M1LE (H. Kishine et al., Biochem. Biophys. Res. Commun., 293:993-999, 2002). We constructed three internal deletion mutants, M1LE/5Adel-1 and M1LE/5Adel-2, each encoding NS5A which cannot bind NS5B, and M1LE/5Adel-3, encoding NS5A that can bind NS5B. After transfection into Huh-7 cells, M1LE/5Adel-3 was replication competent, but both M1LE/5Adel-1 and M1LE/5Adel-2 were not. Next we prepared 20 alanine-substituted clustered mutants within both NS5B-binding regions and examined the effect of these mutants on HCV RNA replication. Only 5 of the 20 mutants were replication competent. Subsequently, we introduced a point mutation, S225P, a deletion of S229, or S232I into NS5A and prepared cured Huh-7 cells that were cured of RNA replication by alpha interferon. Finally, with these point mutations and cured cells, we established a highly improved replicon system. In this system, only the same five mutants were replication competent. These results strongly suggest that the interaction between NS5A and NS5B is critical for HCV RNA replication in the HCV replicon system.  相似文献   

16.
The question of whether hepatitis C virus (HCV) RNA is translated by a mechanism of internal ribosome entry has been examined by testing whether insertion of HCV sequences between the two cistrons of a dicistronic mRNA promotes translation of the downstream cistron in rabbit reticulocyte lysates. Deletion analysis showed that efficient internal initiation required a segment of the HCV genome extending from about nucleotides 40-370 and that deletions from the 3'-end of this element were highly deleterious. As the authentic initiation codon for HCV polyprotein synthesis is at nucleotide 342, this demonstrates that, besides 5'-UTR sequences, a short length of HCV coding sequences is required for internal initiation. This finding was confirmed in transfection assays of BT7-H cells and was shown to be independent of the nature of the downstream reporter cistron. The strong requirement for coding sequences is in sharp contrast to internal initiation of picornavirus RNA translation. As a probable correlate with this, it was also found that the efficiency of internal initiation was only marginally compromised when the authentic initiation codon was mutated to a non-AUG codon, again in sharp contrast with the picornaviruses. The finding that coding sequences are required for internal initiation has important implications for the design of experiments to test for internal initiation of translation of cellular mRNAs.  相似文献   

17.
Hepatitis C virus (HCV) translation initiation is mediated by a highly structured and conserved RNA, termed the Internal Ribosome Entry Site (IRES), located at the 5′-end of its single stranded RNA genome. It is a key target for the development of new antiviral compounds. Here we made use of the recently developed HCV cell culture system to test the antiviral activity of artificial ribonucleases consisting of imidazole(s) linked to antisense oligodeoxynucleotides targeting the HCV IRES. Results from the cell culture model indicate that the naked antisense oligodeoxynucleotide displayed an efficient antiviral activity. Despite the increased activity observed with the addition of imidazole moieties when tested with the cell-free system, it appears that these improvements were not reproduced in the cellular model.  相似文献   

18.
The replication complexes (RCs) of positive-stranded RNA viruses are intimately associated with cellular membranes. To investigate membrane alterations and to characterize the RC of mouse hepatitis virus (MHV), we performed biochemical and ultrastructural studies using MHV-infected cells. Biochemical fractionation showed that all 10 of the MHV gene 1 polyprotein products examined pelleted with the membrane fraction, consistent with membrane association of the RC. Furthermore, MHV gene 1 products p290, p210, and p150 and the p150 cleavage product membrane protein 1 (MP1, also called p44) were resistant to extraction with Triton X-114, indicating that they are integral membrane proteins. The ultrastructural analysis revealed double-membrane vesicles (DMVs) in the cytoplasm of MHV-infected cells. The DMVs were found either as separate entities or as small clusters of vesicles. To determine whether MHV proteins and viral RNA were associated with the DMVs, we performed immunocytochemistry electron microscopy (IEM). We found that the DMVs were labeled using an antiserum directed against proteins derived from open reading frame 1a of MHV. By electron microscopy in situ hybridization (ISH) using MHV-specific RNA probes, DMVs were highly labeled for both gene 1 and gene 7 sequences. By combined ISH and IEM, positive-stranded RNA and viral proteins localized to the same DMVs. Finally, viral RNA synthesis was detected by labeling with 5-bromouridine 5'-triphosphate. Newly synthesized viral RNA was found to be associated with the DMVs. We conclude from these data that the DMVs carry the MHV RNA replication complex and are the site of MHV RNA synthesis.  相似文献   

19.
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5′-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5′-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5′- and 3′-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.  相似文献   

20.
Suzuki H  Tamai N  Habu Y  Chang MO  Takaku H 《FEBS letters》2008,582(20):3085-3089
Short-hairpin RNAs (shRNAs) inhibit gene expression by RNA interference. Here, we report on the inhibition, by baculovirus-based vector-derived shRNAs, of core-protein expression in full-length hepatitis C virus (HCV) replicon cells. shRNAs were designed to target the highly conserved core region of the HCV genome. In particular, the core-shRNA452 containing nucleotides 452-472, as the target in the HCV core gene, dramatically inhibited the expression of the HCV core protein in replicon cells. Furthermore, HCV core-protein expression was inhibited more strongly by the vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped baculovirus vector than by the wild-type baculovirus vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号