首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The host type I interferon response to viral and bacterial infections   总被引:10,自引:0,他引:10  
Perry AK  Chen G  Zheng D  Tang H  Cheng G 《Cell research》2005,15(6):407-422
Type I interferons (IFN) are well studied cytokines with anti-viral and immune-modulating functions. Type I IFNs are produced following viral infections, but until recently, the mechanisms of viral recognition leading to IFN production were largely unknown. Toll like receptors (TLRs) have emerged as key transducers of type I IFN during viral infections by recognizing various viral components. Furthermore, much progress has been made in defining the signaling pathways downstream of TLRs for type I IFN production. TLR7 and TLR9 have become apparent as universally important in inducing type I IFN during infection with most viruses, particularly by plasmacytoid dendritic cells. New intracellular viral pattern recognition receptors leading to type I IFN production have been identified. Many bacteria can also induce the up-regulation of these cytokines. Interestingly, recent studies have found a detrimental effect on host cells if type Ⅰ IFN is produced during infection with the intracellular gram-positive bacterial pathogen, Listeria monocytogenes. This review will discuss the recent advances made in defining the signaling pathways leading to type I IFN production.  相似文献   

2.
3.
Summary Twenty strains of poliomyelitis virus recovered from cases of abortive, non-paralytic, poliomyelitis have been tested for neurotropism. Only one strain possessed a low intraspinal activity inCynomolgus monkeys. Six single particle cultures were derived from this naturally occurring highly attenuated strain of type 1 poliomyelitis virus. It has been shown that the original virus consisted of a mixture of virus particles with varying degree of neurotropism. The antigenic and immunizing capacity of one highly attenuated plaque progeny has been tested in guinea pigs and monkeys. Aided with a grant from the National Health Research Council T.N.O.  相似文献   

4.
We previously showed that a noncoding subgenomic flavivirus RNA (sfRNA) is required for viral pathogenicity, as a mutant West Nile virus (WNV) deficient in sfRNA production replicated poorly in wild-type mice. To investigate the possible immunomodulatory or immune evasive functions of sfRNA, we utilized mice and cells deficient in elements of the type I interferon (IFN) response. Replication of the sfRNA mutant WNV was rescued in mice and cells lacking interferon regulatory factor 3 (IRF-3) and IRF-7 and in mice lacking the type I alpha/beta interferon receptor (IFNAR), suggesting a contribution for sfRNA in overcoming the antiviral response mediated by type I IFN. This was confirmed by demonstrating rescue of mutant virus replication in the presence of IFNAR neutralizing antibodies, greater sensitivity of mutant virus replication to IFN-α pretreatment, partial rescue of its infectivity in cells deficient in RNase L, and direct effects of transfected sfRNA on rescuing replication of unrelated Semliki Forest virus in cells pretreated with IFN-α. The results define a novel function of sfRNA in flavivirus pathogenesis via its contribution to viral evasion of the type I interferon response.  相似文献   

5.
6.
West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV.  相似文献   

7.
8.
9.
The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins responsible for this inhibition.  相似文献   

10.
11.

Background

Risk of encephalitis from West Nile virus (WNV) infection increases dramatically with age. Understanding the basis of this susceptibility requires development of suitable animal models. Here, we investigated the immune response to WNV in old non-human primates.

Methodology/Principal Findings

We investigated clinical, immunological and virological correlates of WNV infection in aging non-human primates. Aged (17–30yrs) and adult (6–9yrs) Rhesus macaques (RM) were challenged with WNV in the presence or the absence of the mosquito salivary gland extract (SGE) to approximate natural infection. None of the 26 animals exhibited clinical signs of the disease. Quantitative PCR suggested discrete and short-lived viremia, but infectious virus was never isolated. There was markedly increased, age-independent, proliferation of CD3 non-B cells, followed by B-cell proliferation, which correlated to the loss of detectable WNV genomes. Moreover, animals primed with mosquito salivary gland extract exhibited reduced circulating WNV RNA. While we found the expected age-associated reduction in T cell proliferation, adaptive immunity did not correlate with infection outcome. That was further confirmed in a cohort of thymectomized and/or CD8 T-cell depleted Cynomolgus macaques (CM; N = 15), who also failed to develop WNV disease.

Conclusions/significance

Results are consistent with strong and age-independent innate resistance of macaques against WNV challenge. This animal model is therefore not suitable for vaccine and therapeutic testing against WNV. However, understanding the basis of their innate resistance against WNV in macaques could provide helpful clues to improve anti-WNV protection of older adults.  相似文献   

12.
13.
A genetic absence of the common IFN-α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/-) mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+) T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+) T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+) T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/-) mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+) T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+) T cell response at a stage distinct from the initial priming event.  相似文献   

14.
15.
Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response.  相似文献   

16.
West Nile virus (WNV) recently became a major public health concern in North America, the Middle East, and Europe. In contrast with the investigations of the North-American isolates, the neurovirulence properties of Middle-Eastern strains of WNV have not been extensively characterized. Israeli WNV strain IS-98-ST1 that has been isolated from a white stork in 1998, was found to be highly neuroinvasive in adult C57BL/6 mice. Strain IS-98-ST1 infects primary neuronal cells from mouse cortex, causing neuronal death. These results demonstrate that Israeli strain IS-98-ST1 provides a suitable viral model for WNV-induced disease associated with recent WNV outbreaks in the Old World.  相似文献   

17.
Alleles at the Flv locus determine disease outcome after a flavivirus infection in mice. Although comparable numbers of congenic resistant and susceptible mouse embryo fibroblasts (MEFs) are infected by the flavivirus West Nile virus (WNV), resistant MEFs produce approximately 100- to 150-fold lower titers than susceptible ones and flavivirus titers in the brains of resistant and susceptible animals can differ by >10,000-fold. The Flv locus was previously identified as the 2'-5' oligoadenylate synthetase 1b (Oas1b) gene. Oas gene expression is up-regulated by interferon (IFN), and after activation by double-stranded RNA, some mouse synthetases produce 2-5A, which activates latent RNase L to degrade viral and cellular RNAs. To determine whether the lower levels of intracellular flavivirus genomic RNA from resistant mice detected in cells at all times after infection were mediated by RNase L, RNase L activity levels in congenic resistant and susceptible cells were compared. Similar moderate levels of RNase L activation by transfected 2-5A were observed in both types of uninfected cells. After WNV infection, the mRNAs of IFN-beta and three Oas genes were up-regulated to similar levels in both types of cells. However, significant levels of RNase L activity were not detected until 72 h after WNV infection and the patterns of viral RNA cleavage products generated were similar in both types of cells. When RNase L activity was down-regulated in resistant cells via stable expression of a dominant negative RNase L mutant, approximately 5- to 10-times-higher yields of WNV were produced. Similarly, about approximately 5- to 10-times-higher virus yields were produced by susceptible C57BL/6 RNase L-/- cells compared to RNase L+/+ cells that were either left untreated or pretreated with IFN and/or poly(I) . poly(C). The data indicate that WNV genomic RNA is susceptible to RNase L cleavage and that RNase L plays a role in the cellular antiviral response to flaviviruses. The results suggest that RNase L activation is not a major component of the Oas1b-mediated flavivirus resistance phenotype.  相似文献   

18.
19.
Vaccination with live attenuated parasites has been shown to induce high level of protection against Toxoplasma gondii. In this study we compared the Mic1-3KO tachyzoite (a live attenuated strain) with the parental wild type (WT) tachyzoite in terms of virulence in mice in vivo, dissemination in mouse tissues and persistence in mouse brain. Survival of mice infected with the Mic1-3KO parasites correlated with reduced parasite burden in mouse tissues compared to the parental strain. Like the WT parasite, Mic1-3KO is able to form tissue cysts in vivo which are not, in our experimental conditions, infectious when given by oral route. Infection with the attenuated tachyzoite induced lower levels of cytokine and chemokine than with the parental strain. These data demonstrate that the deleted strain derived from a type I strain behaves like type II strain in outbred mice in terms of virulence, dissemination in mouse tissue and persistence in brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号