首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The binding of p120-catenin and β-catenin to the cytoplasmic domain of E-cadherin establishes epithelial cell-cell adhesion. Reduction and loss of catenin expression degrades E-cadherin-mediated carcinoma cell-cell adhesion and causes carcinomas to progress into aggressive states. Since both catenins are differentially regulated and play distinct roles when they dissociate from E-cadherin, evaluation of their expression, subcellular localization and the correlation with E-cadherin expression are important subjects. However, the same analyses are not readily performed on squamous cell carcinomas in which E-cadherin expression determines the disease progression. In the present study, we examined expression and subcellular localization of p120-catenin and β-catenin in oral carcinomas (n = 67) and its implications in the carcinoma progression and E-cadherin expression using immunohitochemistry. At the invasive front, catenin-membrane-positive carcinoma cells were decreased in the dedifferentiated (p120-catenin, P < 0.05; β-catenin, P < 0.05) and invasive carcinomas (p120-catenin, P < 0.01; β-catenin, P < 0.05) and with the E-cadherin staining (p120-catenin, P < 0.01; β-catenin, P < 0.01). Carcinoma cells with β-catenin cytoplasmic and/or nuclear staining were increased at the invasive front compared to the center of tumors (P < 0.01). Although the p120-catenin isoform shift from three to one associates with carcinoma progression, it was not observed after TGF-β, EGF or TNF-α treatments. The total amount of p120-catenin expression was decreased upon co-treatment of TGF-β with EGF or TNF-α. The above data indicate that catenin membrane staining is a primary determinant for E-cadherin-mediated cell-cell adhesion and progression of oral carcinomas. Furthermore, it suggests that loss of p120-catenin expression and cytoplasmic localization of β-catenin fine-tune the carcinoma progression.  相似文献   

5.
The present study was aimed at investigating the expression of metastasis-associated in colon cancer 1 (MACC1) in nasopharyngeal carcinoma (NPC), its relationship with β-catenin, Met expression and the clinicopathological features of NPC, and its roles in carcinogenesis of NPC. Our results showed that MACC1 expression was higher in NPC cells and tissues than that in normal nasopharyngeal cells and chronic inflammation of the nasopharynx tissues, respectively. MACC1 expression was closely related to the clinical stage (p = 0.005) and the N classification (p<0.05) of NPC. Significant correlations between MACC1 expression and Met expression (p = 0.003), MACC1 expression and β-catenin abnormal expression (p = 0.033) were found in NPC tissues. MACC1 knockdown dramatically inhibited cellular proliferation, migration, invasion, and colony formation, but induced apoptosis in NPC cells compared with the control group. Furthermore, MACC1 down-regulation inhibited phosphorylated-Akt (Ser473) and β-catenin expression in NPC cells, but phosphorylated-Erk1/2 expression was not altered. Further study showed that phosphotidylinsitol-3-kinase inhibitor downregulated β-catenin and Met expression in NPC cells. There was a significant relationship between MACC1 expression and phosphorylated-Akt expression (p = 0.03), β-catenin abnormal expression and phosphorylated-Akt expression (p = 0.012) in NPC tissue, respectively. In addition, Epstein Barr virus-encoded oncogene latent membrane protein 1 upregulated MACC1 expression in NPC cells. Our results firstly suggest that MACC1 plays an important role in carcinogenesis of NPC through Akt/β-catenin signaling pathway. Targeting MACC1 may be a novel therapeutic strategy for NPC.  相似文献   

6.

Background

Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer.

Key Results

In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of β-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27Kip1 in presence of CaSR agonists.

Conclusion

Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-β-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors.  相似文献   

7.
8.

Background

During the development and progression of endometriotic lesions, excess fibrosis may lead to scarring, chronic pain, and altered tissue function. However, the cellular and molecular mechanisms of fibrosis in endometriosis remain to be clarified.

Objectives

The objective of the present study was to investigate whether the Wnt/β-catenin signaling pathway was involved in regulating the cellular and molecular mechanisms of fibrosis in endometriosis in vitro and to evaluate whether fibrosis could be prevented by targeting the Wnt/β-catenin pathway in a xenograft model of endometriosis in immunodeficient nude mice.

Methods

Seventy patients (40 with and 30 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of small-molecule antagonists of the Tcf/β-catenin complex (PKF 115-584 and CGP049090) on fibrotic markers (alpha smooth muscle actin, type I collagen, connective tissue growth factor, fibronectin) and collagen gel contraction were evaluated in endometrial and endometriotic stromal cells from patients with endometriosis. In vitro effects of activation of the Wnt/β-catenin signaling pathway by treatment with recombinant Wnt3a on profibrotic responses were evaluated in endometrial stromal cells of patients without endometriosis. The effects of CGP049090 treatment on the fibrosis of endometriotic implants were evaluated in a xenograft model of endometriosis in immunodeficient nude mice.

Results

Treatment with PKF 115-584 and CGP049090 significantly decreased the expression of alpha smooth muscle actin, type I collagen, connective tissue growth factor and fibronectin mRNAs in both endometriotic and endometrial stromal cells with or without transforming growth factor-β1 stimulation. Both endometriotic and endometrial stromal cell-mediated contraction of collagen gels was significantly decreased by treatment with PKF 115-584 and CGP049090 as compared to that of untreated cells. The animal experiments showed that CGP049090 prevented the progression of fibrosis and reversed established fibrosis in endometriosis.

Conclusion

Aberrant activation of the Wnt/β-catenin pathway may be involved in mediating fibrogenesis in endometriosis.  相似文献   

9.
Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.  相似文献   

10.
11.
12.
13.

Objective

Mesenchymal progenitor cells (MPCs) are found in articular cartilage from normal controls and patients with osteoarthritis (OA). Nevertheless, the molecular mechanisms of the proliferation and differentiation of these cells remain unclear. In this study, we aimed to determine the involvement of Wnt/β-catenin signaling in regulating the proliferation and differentiation of MPCs.

Methods

MPCs were isolated from the articular cartilage of normal and OA patients. Cells were sorted by immunomagnetic cell separation. Cell proliferation capacity was evaluated using the MTT assay. Toluidine blue staining and immunostaining with anti-collagen II or anti-aggrecan antibodies were used to determine the chondrogenic differentiation capabilities of MPCs. The mRNA and protein expression of target genes were examined by quantitative real-time polymerase chain reaction and Western blotting, respectively. Knock-down of p53 expression was achieved with RNA interference.

Results

Most cells isolated from the normal and OA patients were CD105+ and CD166+ positive (Normal subjects: CD105+/CD166+, 94.6%±1.1%; OA: CD105+/CD166+, 93.5%±1.1%). MPCs derived from OA subjects exhibited decreased differentiation capabilities and enhanced Wnt/β-catenin activity. Inhibition of Wnt/β-catenin signaling promoted proliferation and differentiation, whereas activation of this pathway by treatment with rWnt3a protein decreased the proliferation and differentiation of normal MPCs. Additionally, Wnt/β-catenin signaling positively regulated p53 expression, and silencing of p53 increased proliferation and differentiation of MPCs.

Conclusions

Wnt/β-catenin regulated the proliferation and differentiation of MPCs through the p53 pathway.  相似文献   

14.
Staphylococcal γ-hemolysin consists of two protein components, F (or HγI) and HγII. To elucidate the mode of action of γ-hemolysin, we studied the binding order of F and HγII to human erythrocytes and the cell-bound state of the two components. The binding of F to human erythrocytes preceded the binding of HγII to the cells, and thereafter hemolysis occurred. Western immunoblot analysis of the cell-bound γ-hemolysin indicated that F and HγII components form high-molecular-mass (150–250 kDa) complexes on the erythrocytes. The toxin complexes were recovered in a Triton X-100-insoluble fraction of the erythrocytes, which contains cytoskeleton proteins. Neither the formation of the toxin complex(es) nor hemolysis occurred when the erythrocytes were treated with proteinase K. Abortion of the complex formation on the proteinase K-treated erythrocytes may be due to the failure of the binding of HγII to the cells, because F bound to the proteinase K-treated erythrocytes to the same extent as to the non-treated erythrocytes.  相似文献   

15.
Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.  相似文献   

16.
D Shi  W Guo  W Chen  L Fu  J Wang  Y Tian  X Xiao  T Kang  W Huang  W Deng 《PloS one》2012,7(8):e43898
Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis, but the precise mechanisms involved remain largely unknown. Here, we investigated the mechanism of action of nicotine in human nasopharyngeal carcinoma (NPC) cells. Nicotine significantly promoted cell proliferation in a dose and time-dependent manner in human NPC cells. The mechanism studies showed that the observed stimulation of proliferation was accompanied by the nicotine-mediated simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling. Treatment of NPC cells with nicotine markedly upregulated the expression of α7AChR and HIF-1α proteins. Transfection with a α7AChR or HIF-1α-specific siRNA or a α7AChR-selective inhibitor significantly attenuated the nicotine-mediated promotion of NPC cell proliferation. Nicotine also promoted the phosphorylation of ERK1/2 but not JNK and p38 proteins, thereby induced the activation of ERK/MAPK signaling pathway. Pretreatment with an ERK-selective inhibitor effectively reduced the nicotine-induced proliferation of NPC cells. Moreover, nicotine upregulated the expression of VEGF but suppressed the expression of PEDF at mRNA and protein levels, leading to a significant increase of the ratio of VEGF/PEDF in NPC cells. Pretreatment with a α7AChR or ERK-selective inhibitor or transfection with a HIF-1α-specific siRNA in NPC cells significantly inhibited the nicotine-induced HIF-1α expression and VEGF/PEDF ratio. These results therefore indicate that nicotine promotes proliferation of human NPC cells in vitro through simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling and suggest that the related molecules such as HIF-1α might be the potential therapeutic targets for tobacco-associated diseases such as nasopharyngeal carcinomas.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号