首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato fruit size results from the combination of cell number and cell size which are respectively determined by cell division and cell expansion processes. As fruit growth is mainly sustained by cell expansion, the development of pericarp and locular tissues is characterized by the concomitant arrest of mitotic activity, inhibition of cyclin-dependent kinase (CDK) activity, and numerous rounds of endoreduplication inducing a spectacular increase in DNA ploidy and mean cell size. To decipher the molecular basis of the endoreduplication-associated cell growth in fruit, we investigated the putative involvement of the WEE1 kinase (Solly;WEE1). We here report a functional analysis of Solly;WEE1 in tomato. Impairing the expression of Solly;WEE1 in transgenic tomato plants resulted in a reduction of plant size and fruit size. In the most altered phenotypes, fruits displayed a reduced number of seeds without embryo development. The reduction of plant-, fruit- and seed size originated from a reduction in cell size which could be correlated with a decrease of the DNA ploidy levels. At the molecular level downregulating Solly;WEE1 in planta resulted in the increase of CDKA activity levels originating from a decrease of the amount of Y15-phosphorylated CDKA, thus indicating a release of the negative regulation on CDK activity exerted by WEE1. Our data indicated that Solly;WEE1 participates in the control of cell size and/or the onset of the endoreduplication process putatively driving cell expansion.  相似文献   

2.
The size of tomato fruit results from the combination of cell number and cell size, which are respectively determined by the cell division and cell expansion processes. As fruit growth is mainly sustained by cell expansion, the development of fleshy pericarp tissue is characterized by numerous rounds of endoreduplication inducing a spectacular increase in DNA ploidy and mean cell size. Although a clear relationship exists between endoreduplication and cell growth in plants, the exact role of endoreduplication has not been clearly elucidated. To decipher the molecular basis of endoreduplication-associated cell growth in fruit, we investigated the putative involvement of the tomato cyclin-dependent kinase inhibitor SlKRP1. We studied the kinetics of pericarp development in tomato fruit at the morphological and cytological levels, and demonstrated that endoreduplication is directly proportional to cell and fruit diameter. We established a mathematical model for tissue growth according to the number of divisions and endocycles. This model was tested in fruits where we managed to decrease the extent of endoreduplication by over-expressing SlKRP1 under the control of a fruit-specific promoter expressed during early development. Despite the fact that endoreduplication was affected, we could not observe any morphological, cytological or metabolic phenotypes, indicating that determination of cell and fruit size can be, at least conditionally, uncoupled from endoreduplication.  相似文献   

3.
Tomato fruit growth is characterized by the occurrence of numerous rounds of DNA endo‐reduplication in connection with cell expansion and final fruit size determination. Endo‐reduplication is an impairment of mitosis that originates from the selective degradation of M phase‐specific cyclins via the ubiquitin‐mediated proteolytic pathway, requiring the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Two types of APC/C activators, namely CCS52 and CDC20 proteins, exist in plants. We report here the molecular characterization of such APC/C activators during fruit development, and provide an in planta functional analysis of SlCCS52A, a gene that is specifically associated with endo‐reduplication in tomato. Altering SlCCS52A expression in either a negative or positive manner had an impact on the extent of endo‐reduplication in fruit, and fruit size was reduced in both cases. In SlCCS52A over‐expressing fruits, endo‐reduplication was initially delayed, accounting for the altered final fruit size, but resumed and was even enhanced at 15 days post anthesis (dpa), leading to fruit growth recovery. This induction of growth mediated by endo‐reduplication had a considerable impact on nitrogen metabolism in developing fruits. Our data contribute to unravelling of the physiological role of endo‐reduplication in growth induction during tomato fruit development.  相似文献   

4.
5.
设施番茄果实生长与环境因子的关系   总被引:1,自引:0,他引:1  
在设施环境下,研究环境因子与番茄果实生长的关系,以期为设施番茄精准管理提供参考。以1h为步长,记录设施内温度、光照强度及空气湿度,每7d进行1次果径测定,将采集的环境数据细分为7个变量,分析7个变量与果实日增量随时间的变化,采用DPS软件进行逐步回归,建立显著环境因子与果实日增量的回归模型。春茬两个棚环境因子随时间动态变化规律较一致,秋茬日光温室与其有所不同。番茄品种'粉冠’和'金棚’果实日增量呈现先升高后降低的趋势,品种'珍琪’果实日增量变化波动较大。3个设施内影响果实日增量的显著环境因子有所不同,7个环境变量之间相互影响、相互制约。剔除不显著的环境变量后,建立了3个番茄品种果实日增量与显著环境变量的回归模型,确定了7个环境因子对果实生长的影响及果实生长适宜的环境变量范围。  相似文献   

6.

Background and Aims

There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase.

Methods

Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices.

Key results

At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts.

Conclusions

These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.  相似文献   

7.
8.
9.
10.
11.
12.
Tomato fruit shape varies significantly in the cultivated germplasm. To a large extent, this variation can be explained by four genes including OVATE. While most varieties with the OVATE mutation bear elongated fruits, some accessions carry round fruit, suggesting the existence of suppressors of OVATE in the germplasm. We developed three intraspecific F2 populations with parents that carried the OVATE mutation but differed in fruit shape. We used a bulk segregant analysis approach and genotyped the extreme classes using a high-throughput genotyping platform, the SolCAP Infinium Assay. The analyses revealed segregation at two quantitative trait loci (QTLs), sov1 and sov2. These loci were confirmed by genotyping and QTL analyses of the entire population. More precise location of those loci using progeny testing confirmed that sov1 on chromosome 10 controlled obovoid and elongated shape, whereas sov2 on chromosome 11 controlled mainly elongated fruit shape. Both loci were located in intervals of <2.4 Mb on their respective chromosomes.  相似文献   

13.
14.
15.
Background and Aims Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Methods Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. Key Results The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. Conclusions As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and stress responses include NO-dependent signalling.  相似文献   

16.
Bertin N 《Annals of botany》2005,95(3):439-447
BACKGROUND AND AIMS: To better understand the regulation of fruit growth in response to environmental factors, the effects of temperature and plant fruit load on cell number, cell size and DNA endoreduplication were analysed. METHODS: Plants were grown at 20/20 degrees C, 25/25 degrees C and 25/20 degrees C day/night temperatures, and inflorescences were pruned to two ('2F') or five ('5F') flowers. KEY RESULTS AND CONCLUSIONS: Despite a lower fruit growth rate at 20/20 degrees C, temperature did not affect final fruit size because of the compensation between cell number and size. The higher cell number at 20/20 degrees C (9.0 x 10(6) against 7.9 x 10(6) at 25/25 degrees C and 7.7 x 10(6) at 25/20 degrees C) resulted from an extended period of cell division, and the smaller cell size was due to a shorter period of expansion rather than a lower expansion rate. By contrast, the lower fruit growth rate and size of 5F fruits compared with 2F fruits resulted from the slow down of cell expansion, whereas the number of cells was hardly affected in the proximal fruit. However, within the inflorescence the decreasing gradient of fruit size from proximal to distal fruits was due to a decrease in cell number with similar cell size. Fruit size variations within each treatment were always positively correlated to variations in cell number, but not in cell size. Negative correlations between cell size and cell number suggested that cells of tomato pericarp can be seen as a population of competing sinks. Mean ploidy was slightly delayed and reduced in 5F fruits compared with 2F fruits. It was highest at 25/25 degrees C and lowest at 25/20 degrees C. Treatments did not affect ploidy and cell size in similar ways, but within each treatment, positive correlations existed between mean ploidy and cell size, though significant only in the 2F-25/20 treatment.  相似文献   

17.
为探明肉桂醛对番茄幼苗耐盐性的影响,该研究以番茄‘合作903’为试验材料,探究肉桂醛(100μg·L-1)对处于100 mmol·L-1 NaCl胁迫下番茄种子萌发与幼苗生长特性的影响。在试验中设置4组处理:对照(CK,蒸馏水)、NaCl (100 mmol·L-1)、NaCl+CA(100 mmol·L-1 NaCl+100μg·L-1 CA)、CA(100μg·L-1)。结果表明:(1)在100 mmol·L-1 NaCl胁迫下,添加100μg·L-1的肉桂醛,番茄种子的发芽势和发芽率均有所提升,番茄幼苗的根长和鲜重均显著提高,说明添加肉桂醛对NaCl胁迫下番茄种子的萌发与幼苗生长均有一定缓解作用。(2)肉桂醛能够有效降低NaCl胁迫导致的番茄幼苗根尖总活性氧(reactive oxygen species, ROS)的过量累积,缓解膜脂过氧化程度从而降低细胞死亡率。综上表明,肉桂醛处理能够通过缓解幼苗的氧化...  相似文献   

18.

Background and Aims

The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum.

Methods

Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs.

Key Results

The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level.

Conclusions

The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip.  相似文献   

19.
20.
Tomato, an essential crop in terms of economic importance and nutritional quality, is also used as a model species for all fleshy fruits and for genomics of Solanaceae. Tomato fruit quality at harvest is a direct function of its metabolite content, which in turn is a result of many physiological changes during fruit development. The aim of the work reported here was to develop a global approach to characterize changes in metabolic profiles in two interdependent tissues from the same tomato fruits. Absolute quantification data of compounds in flesh and seeds from 8 days to 45 days post anthesis (DPA) were obtained through untargeted (proton nuclear magnetic resonance, 1H-NMR) and targeted metabolic profiling (liquid chromatography with diode array detection (LC-DAD) or gas chromatography with flame ionization detection (GC-FID)). These data were analyzed with chemometric approaches. Kohonen self organizing maps (SOM) analysis of these data allowed us to combine multivariate (distribution of samples on Kohonen SOMs) and univariate information (component plane representation of metabolites) in a single analysis. This strategy confirmed published data and brought new insights on tomato flesh and seed composition, thus demonstrating its potential in metabolomics. The compositional changes were related to physiological processes occurring in each tissue. They pointed to (i) some parallel changes at early stages in relation to cell division and transitory storage of carbon, (ii) metabolites participating in the fleshy trait and (iii) metabolites involved in the specific developmental patterns of the seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号