共查询到20条相似文献,搜索用时 0 毫秒
1.
An important aspect of microparasite biology is the fact that infections are populations of thousands of microbes. As any population, infections are hence subject to two main types of changes: demographic and evolutionary. Here we analyse the consequences of within-host evolutionary changes. We build an epidemiological model where infections are regularly invaded by locally favored mutations affecting various infectious traits (virulence, transmissibility and clearance). Our results are the following. In durable infections, where within-host evolution is an important matter, a drop of transmissibility is only slightly deleterious to the infection, while a reduction of infection lifespan is very costly. In consequence, locally favored mutations reducing transmissibility reach a larger frequency, or even the complete fixation, and the suboptimality accumulated in infections owing to within-host evolution affects more their transmission than their duration. Conversely, taking an infection at random and observing the events of within-host evolution, one is more likely to observe reductions of infection length than reductions of transmissibility, because the mutations affecting transmissibility are often already present in infections. We then discuss the interpretation of these results in terms of deleterious mutations, and we also emphasize that the management of within-host evolution could be used as a novel therapeutic approach to the treatment of infection. 相似文献
2.
C. M. LIVELY 《Journal of evolutionary biology》2009,22(6):1268-1274
The evolution of parasite life histories should usually have correlated effects on host survivorship and/or reproductive success. For example, parasites that reproduce more rapidly might be expected to cause greater reductions in host fitness. Important theoretical advances have recently been made on virulence evolution, but the results are not always consistent. Here I compare two models [ Q. Rev. Biol. 71 (1996) 37 ; Q. Rev. Biol. 75 (2000) 261 ] on the evolution of virulence that get qualitatively different results with respect to the effects of coinfection. I also construct a third model that attempts to connect these two formulations. The results suggest that parasite growth rates should increase as local host competition increases, unless relatedness is at equilibrium. In addition, the qualitative effect of adding coinfections on parasite growth rates depends critically on how the number of coinfections affects transmission success. 相似文献
3.
One of the enduring puzzles in biology and the social sciences is the origin and persistence of intraspecific cooperation and altruism in humans and other species. Hundreds of theoretical models have been proposed and there is much confusion about the relationship between these models. To clarify the situation, we developed a synthetic conceptual framework that delineates the conditions necessary for the evolution of altruism and cooperation. We show that at least one of the four following conditions needs to be fulfilled: direct benefits to the focal individual performing a cooperative act; direct or indirect information allowing a better than random guess about whether a given individual will behave cooperatively in repeated reciprocal interactions; preferential interactions between related individuals; and genetic correlation between genes coding for altruism and phenotypic traits that can be identified. When one or more of these conditions are met, altruism or cooperation can evolve if the cost-to-benefit ratio of altruistic and cooperative acts is greater than a threshold value. The cost-to-benefit ratio can be altered by coercion, punishment and policing which therefore act as mechanisms facilitating the evolution of altruism and cooperation. All the models proposed so far are explicitly or implicitly built on these general principles, allowing us to classify them into four general categories. 相似文献
4.
Joan B. Silk 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1533):3243-3254
Darwin was struck by the many similarities between humans and other primates and believed that these similarities were the product of common ancestry. He would be even more impressed by the similarities if he had known what we have learned about primates over the last 50 years. Genetic kinship has emerged as the primary organizing force in the evolution of primate social organization and the patterning of social behaviour in non-human primate groups. There are pronounced nepotistic biases across the primate order, from tiny grey mouse lemurs (Microcebus murinus) that forage alone at night but cluster with relatives to sleep during the day, to cooperatively breeding marmosets that rely on closely related helpers to rear their young, rhesus macaque (Macaca mulatta) females who acquire their mother''s rank and form strict matrilineal dominance hierarchies, male howler monkeys that help their sons maintain access to groups of females and male chimpanzees (Pan troglodytes) that form lasting relationships with their brothers. As more evidence of nepotism has accumulated, important questions about the evolutionary processes underlying these kin biases have been raised. Although kin selection predicts that altruism will be biased in favour of relatives, it is difficult to assess whether primates actually conform to predictions derived from Hamilton''s rule: br > c. In addition, other mechanisms, including contingent reciprocity and mutualism, could contribute to the nepotistic biases observed in non-human primate groups. There are good reasons to suspect that these processes may complement the effects of kin selection and amplify the extent of nepotistic biases in behaviour. 相似文献
5.
Despite long-standing theoretical interest in the evolution of cooperation, empirical data on the evolutionary dynamics of cooperative traits remain limited. Here, we investigate the evolutionary dynamics of a simple public goods cooperative trait, invertase secretion, using a long-term selection experiment in Saccharomyces cerevisiae. We show that average investment in cooperation remains essentially constant over a period of hundreds of generations in viscous populations with high relatedness. Average cooperation remains constant despite transient local selection for high and low levels of cooperation that generate dynamic social interactions. Natural populations of yeast show similar variation in social strategies, which is consistent with the existence of similar selective pressures on public goods cooperation in nature. 相似文献
6.
Johnstone RA Cant MA Field J 《Proceedings. Biological sciences / The Royal Society》2012,279(1729):787-793
In his famous haplodiploidy hypothesis, W. D. Hamilton proposed that high sister-sister relatedness facilitates the evolution of kin-selected reproductive altruism among Hymenopteran females. Subsequent analyses, however, suggested that haplodiploidy cannot promote altruism unless altruists capitalize on relatedness asymmetries by helping to raise offspring whose sex ratio is more female-biased than the population at large. Here, we show that haplodiploidy is in fact more favourable than is diploidy to the evolution of reproductive altruism on the part of females, provided only that dispersal is male-biased (no sex-ratio bias or active kin discrimination is required). The effect is strong, and applies to the evolution both of sterile female helpers and of helping among breeding females. Moreover, a review of existing data suggests that female philopatry and non-local mating are widespread among nest-building Hymenoptera. We thus conclude that Hamilton was correct in his claim that 'family relationships in the Hymenoptera are potentially very favourable to the evolution of reproductive altruism'. 相似文献
7.
Rolf Kümmerli Ashleigh S. Griffin Stuart A. West Angus Buckling Freya Harrison 《Proceedings. Biological sciences / The Royal Society》2009,276(1672):3531-3538
There has been extensive theoretical debate over whether population viscosity (limited dispersal) can favour cooperation. While limited dispersal increases the probability of interactions occurring between relatives, which can favour cooperation, it can also lead to an increase in competition between relatives and this can reduce or completely negate selection for cooperation. Despite much theoretical attention, there is a lack of empirical research investigating these issues. We cultured Pseudomonas aeruginosa bacteria in medium with different degrees of viscosity and examined the fitness consequences for a cooperative trait—the production of iron-scavenging siderophore molecules. We found that increasing viscosity of the growth medium (i) significantly limited bacterial dispersal and the diffusion of siderophore molecules and (ii) increased the fitness of individuals that produced siderophores relative to mutants that did not. We propose that viscosity favours siderophore-producing individuals in this system, because the benefits of siderophore production are more likely to accrue to relatives (i.e. greater indirect benefits), and, at the same time, bacteria are more likely to gain direct fitness benefits by taking up siderophore molecules produced by themselves (i.e. the trait becomes less cooperative). Our results suggest that viscosity of the microbial growth environment is a crucial factor determining the dynamics of wild-type bacteria and siderophore-deficient mutants in natural habitats, such as the viscous mucus in cystic fibrosis lung. 相似文献
8.
9.
10.
Competition among different parasite genotypes within a host is predicted to affect virulence. The direction of this effect, however, depends critically on the mechanisms that parasites use to compete or to cooperate with each other. One mechanism that bacteria use to compete with each other is via the production of bacteria-killing toxins, called bacteriocins. This warfare among parasites within a host is predicted to reduce the rate of host exploitation, resulting in lower virulence. By contrast, if parasites within a host are highly related, there could be a reduction in within-host conflict, increasing virulence. We examined this idea by allowing an insect-parasitic nematode (Steinernema carpocapsae) and its symbiotic bacteria (Xenorhabdus nematophila) to evolve for 20 passages under two different migration treatments (low and high). We found that host mortality rates were higher in the low-migration treatment when compared with the high-migration treatment. In addition, bacteria isolated from the same insect host inhibited each other's growth, but only in the high-migration treatment. These results show that population structure and interactions among parasites within hosts can be critical to understanding virulence. 相似文献
11.
H Knolle 《Journal of theoretical biology》1989,136(2):199-207
Social and cultural habits of human populations affect the biological evolution of the agents of infectious diseases. Measles and similar diseases have evolved in the Old World and cannot have existed in their present form before the rise of the great river valley civilizations. It is suggested that increased virulence of measles in white and indigenous communities in America 1500-1800 may be due to a rare strain of the virus, which was selected during transfer from Europe. The release of viruses for biological pest control has provided new material for the study of the co-evolution of host-parasite systems, which has upset the dogma "evolution tends to avirulence". It is pointed out that this issue is closely related to the group selection debate among ethologists, i.e. to the problem: how can group selection overcome individual selection? A model is proposed in which differential growth of two strains of a parasite within the host and their transmission to new hosts is considered. It is supposed that transmission stages excreted by infectious hosts enter a common pool where they are mixed before infecting new hosts. Under these conditions, selection of the slower strain is possible only if the mean size of parasite inoculum is very small, i.e. if the density of transmission stages in the environment is low. The impact of this result on host pathology depends on the relation between virulence and transmission efficiency of the parasite. 相似文献
12.
Matishalin Patel Ben Raymond Michael B. Bonsall Stuart A. West 《Journal of evolutionary biology》2019,32(4):310-319
The growth and virulence of the bacteria Bacillus thuringiensis depend on the production of Cry toxins, which are used to perforate the gut of its host. Successful invasion of the host relies on producing a threshold amount of toxin, after which there is no benefit from producing more toxin. Consequently, the production of Cry toxin appears to be a different type of social problem compared with the public goods scenarios that bacteria usually encounter. We show that selection for toxin production is a volunteer's dilemma. We make specific predictions that (a) selection for toxin production depends upon an interplay between the number of bacterial cells that each host ingests and the genetic relatedness between those cells; (b) cheats that do not produce toxin gain an advantage when at low frequencies, and at high bacterial density, allowing them to be maintained in a population alongside toxin‐producing cells. More generally, our results emphasize the diversity of the social games that bacteria play. 相似文献
13.
Robert Boyd Peter J. Richerson 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1533):3281-3288
The scale of human cooperation is an evolutionary puzzle. All of the available evidence suggests that the societies of our Pliocene ancestors were like those of other social primates, and this means that human psychology has changed in ways that support larger, more cooperative societies that characterize modern humans. In this paper, we argue that cultural adaptation is a key factor in these changes. Over the last million years or so, people evolved the ability to learn from each other, creating the possibility of cumulative, cultural evolution. Rapid cultural adaptation also leads to persistent differences between local social groups, and then competition between groups leads to the spread of behaviours that enhance their competitive ability. Then, in such culturally evolved cooperative social environments, natural selection within groups favoured genes that gave rise to new, more pro-social motives. Moral systems enforced by systems of sanctions and rewards increased the reproductive success of individuals who functioned well in such environments, and this in turn led to the evolution of other regarding motives like empathy and social emotions like shame. 相似文献
14.
How do human groups maintain a high level of cooperation despite a low level of genetic relatedness among group members? We suggest that many humans have a predisposition to punish those who violate group-beneficial norms, even when this imposes a fitness cost on the punisher. Such altruistic punishment is widely observed to sustain high levels of cooperation in behavioral experiments and in natural settings. We offer a model of cooperation and punishment that we call STRONG RECIPROCITY: where members of a group benefit from mutual adherence to a social norm, strong reciprocators obey the norm and punish its violators, even though as a result they receive lower payoffs than other group members, such as selfish agents who violate the norm and do not punish, and pure cooperators who adhere to the norm but free-ride by never punishing. Our agent-based simulations show that, under assumptions approximating likely human environments over the 100000 years prior to the domestication of animals and plants, the proliferation of strong reciprocators when initially rare is highly likely, and that substantial frequencies of all three behavioral types can be sustained in a population. As a result, high levels of cooperation are sustained. Our results do not require that group members be related or that group extinctions occur. 相似文献
15.
When studying how much a parasite harms its host, evolutionary biologists turn to the evolutionary theory of virulence. That theory has been successful in predicting how parasite virulence evolves in response to changes in epidemiological conditions of parasite transmission or to perturbations induced by drug treatments. The evolutionary theory of virulence is, however, nearly silent about the expected differences in virulence between different species of parasite. Why, for example, is anthrax so virulent, whereas closely related bacterial species cause little harm? The evolutionary theory might address such comparisons by analysing differences in tradeoffs between parasite fitness components: transmission as a measure of parasite fecundity, clearance as a measure of parasite lifespan and virulence as another measure that delimits parasite survival within a host. However, even crude quantitative estimates of such tradeoffs remain beyond reach in all but the most controlled of experimental conditions. Here, we argue that the great recent advances in the molecular study of pathogenesis provide a way forward. In light of those mechanistic studies, we analyse the relative sensitivity of tradeoffs between components of parasite fitness. We argue that pathogenic mechanisms that manipulate host immunity or escape from host defences have particularly high sensitivity to parasite fitness and thus dominate as causes of parasite virulence. The high sensitivity of immunomodulation and immune escape arise because those mechanisms affect parasite survival within the host, the most sensitive of fitness components. In our view, relating the sensitivity of pathogenic mechanisms to fitness components will provide a way to build a much richer and more general theory of parasite virulence. 相似文献
16.
The evolution and stability of helping behaviour has attracted great research efforts across disciplines. However, the field is also characterized by a great confusion over terminology and a number of disagreements, often between disciplines but also along taxonomic boundaries. In an attempt to clarify several issues, we identify four distinct research fields concerning the evolution of helping: (1) basic social evolution theory that studies helping within the framework of Hamilton's inclusive fitness concept, i.e. direct and indirect benefits, (2) an ecological approach that identifies settings that promote life histories or interaction patterns that favour unconditional cooperative and altruistic behaviour, e.g. conditions that lead to interdependency or interactions among kin, (3) the game theoretic approach that identifies strategies that provide feedback and control mechanisms (protecting from cheaters) favouring cooperative behaviour (e.g. pseudo-reciprocity, reciprocity), and (4) the social scientists' approach that particularly emphasizes the special cognitive requirements necessary for human cooperative strategies. The four fields differ with respect to the 'mechanisms' and the 'conditions' favouring helping they investigate. Other major differences concern a focus on either the life-time fitness consequences or the immediate payoff consequences of behaviour, and whether the behaviour of an individual or a whole interaction is considered. We suggest that distinguishing between these four separate fields and their complementary approaches will reduce misunderstandings, facilitating further integration of concepts within and across disciplines. 相似文献
17.
Natural host‐parasite interactions exhibit considerable variation in host quality, with profound consequences for disease ecology and evolution. For instance, treatments (such as vaccination) may select for more transmissible or virulent strains. Previous theory has addressed the ecological and evolutionary impact of host heterogeneity under the assumption that hosts and parasites disperse globally. Here, we investigate the joint effects of host heterogeneity and local dispersal on the evolution of parasite life‐history traits. We first formalise a general theoretical framework combining variation in host quality and spatial structure. We then apply this model to the specific problem of parasite evolution following vaccination. We show that, depending on the type of vaccine, spatial structure may select for higher or lower virulence compared to the predictions of non‐spatial theory. We discuss the implications of our results for disease management, and their broader fundamental relevance for other causes of host heterogeneity in nature. 相似文献
18.
Amy E. Leedale Stuart P. Sharp Michelle Simeoni Elva J. H. Robinson Ben J. Hatchwell 《Molecular ecology》2018,27(7):1714-1726
In animal societies, characteristic demographic and dispersal patterns may lead to genetic structuring of populations, generating the potential for kin selection to operate. However, even in genetically structured populations, social interactions may still require kin discrimination for cooperative behaviour to be directed towards relatives. Here, we use molecular genetics and long‐term field data to investigate genetic structure in an adult population of long‐tailed tits Aegithalos caudatus, a cooperative breeder in which helping occurs within extended kin networks, and relate this to patterns of helping with respect to kinship. Spatial autocorrelation analyses reveal fine‐scale genetic structure within our population, such that related adults of either sex are spatially clustered following natal dispersal, with relatedness among nearby males higher than that among nearby females, as predicted by observations of male‐biased philopatry. This kin structure creates opportunities for failed breeders to gain indirect fitness benefits via redirected helping, but crucially, most close neighbours of failed breeders are unrelated and help is directed towards relatives more often than expected by indiscriminate helping. These findings are consistent with the effective kin discrimination mechanism known to exist in long‐tailed tits and support models identifying kin selection as the driver of cooperation. 相似文献
19.
C. M. Lively 《Journal of evolutionary biology》2001,14(2):317-324
The evolution of parasite virulence is thought to involve a trade‐off between parasite reproductive rate and the effect of increasing the number of propagules on host survivorship. Such a trade‐off should lead to selection for an intermediate level of within‐host reproduction (λ). Here I consider the effects of parasite propagule number on selection affecting λ when (i) the effect of each propagule is independent of propagule number, and (ii) when the effect of each propagule changes as a function of propagule number. Virulence evolves in these models as a correlated response to selection on λ. If each propagule has the same effect (s) as all previous propagules, the survivorship of infected hosts is reduced by more than 60% at equilibrium, independent of the value of s. If, instead, each propagule has a more negative effect on host survivorship than previous propagules, host survivorship at equilibrium is expected to increase as the effect becomes more pronounced. These results are directly parallel to results derived for population mean fitness at mutation‐selection balance; and they suggest that high virulence should be associated with parasites for which the effect of adding propagules either remains constant or diminishes with propagule number. 相似文献
20.
The question why different host individuals within a population differ with respect to infection resistance is of fundamental importance for understanding the mechanisms of parasite-mediated selection. We addressed this question by infecting wild-caught captive male greenfinches with intestinal coccidian parasites originating either from single or multiple hosts. Birds with naturally low pre-experimental infection retained their low infection status also after reinfection with multiple strains, indicating that natural infection intensities confer information about the phenotypic ability of individuals to resist novel strains. Exposure to novel strains did not result in protective immunity against the subsequent infection with the same strains. Infection with multiple strains resulted in greater virulence than single-strain infection, indicating that parasites originating from different host individuals are genetically diverse. Our experiment thus demonstrates the validity of important but rarely tested assumptions of many models of parasite-mediated selection in a wild bird species and its common parasite. 相似文献