首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell accumulation at the tissue site after primary and secondary immunization. CD27-dependent CD4(+) T cell help for the memory CD8(+) T cell response was delivered during priming. It did not detectably affect formation of CD8(+) memory T cells, but promoted their secondary expansion. CD27 improved survival of primed CD4(+) T cells, but its contribution to the memory CD8(+) T cell response relied on altered CD4(+) T cell quality rather than quantity. CD27 induced a Th1-diagnostic gene expression profile in CD4(+) T cells, which included the membrane molecule MS4A4B. Accordingly, CD27 increased the frequency of IFN-gamma- and IL-2-producing CD4(+) T cells. It did not affect CD40L expression. Strikingly, MS4A4B was also identified as a unique marker of CD8(+) memory T cells that had received CD27-proficient CD4(+) T cell help during the primary response. This apparent imprinting effect suggests a role for MS4A4B as a downstream effector in CD27-dependent help for CD8(+) T cell memory.  相似文献   

2.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

3.
DNA-based immunizations have been used to determine the patterns of type 1 and type 2 cytokines that can be induced in vivo for Ag-specific CD4(+) and CD8(+) T cells. IL-4 was used as a signature cytokine for a type 2 T cell response and IFN-gamma as the signature cytokine for a type 1 response. Gene gun deliveries of secreted Ags were used to bias responses toward type 2 and saline injections of cell-associated Ags to bias responses toward type 1. The studies revealed that gene gun bombardments of DNAs expressing secreted Ags strongly biased responses toward type 2, inducing IL-4-producing CD8(+) as well as CD4(+) T cells. Saline injections of DNAs expressing cell-associated Ags strongly biased responses toward type 1, inducing IFN-gamma-producing CD8(+) and CD4(+) cells. A mixed type 1/type 2 response of IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells was found for gene gun deliveries of cell-associated Ags. Saline injections of secreted Ags raised a weakly type 1-biased response characterized by only slightly higher frequencies of IFN-gamma- than IL-4-producing CD4(+) and CD8(+) T cells. Studies in B cell knockout and hen egg lysozyme Ig transgenic mice revealed that B cells were required for the generation of IL-4-producing CD8(+) T cells.  相似文献   

4.
Although the adaptive immune system has a remarkable ability to mount rapid recall responses to previously encountered pathogens, the cellular and molecular signals necessary for memory CD8(+) T cell reactivation are poorly defined. IL-15 plays a critical role in memory CD8(+) T cell survival; however, whether IL-15 is also involved in memory CD8(+) T cell reactivation is presently unclear. Using artificial Ag-presenting surfaces prepared on cell-sized microspheres, we specifically addressed the role of IL-15 transpresentation on mouse CD8(+) T cell activation in the complete absence of additional stimulatory signals. In this study we demonstrate that transpresented IL-15 is significantly more effective than soluble IL-15 in augmenting anti-CD3epsilon-induced proliferation and effector molecule expression by CD8(+) T cells. Importantly, IL-15 transpresentation and TCR ligation by anti-CD3epsilon or peptide MHC complexes exhibited synergism in stimulating CD8(+) T cell responses. In agreement with previous studies, we found that transpresented IL-15 preferentially stimulated memory phenotype CD8(+) T cells; however, in pursuing this further, we found that central memory (T(CM)) and effector memory (T(EM)) CD8(+) T cells responded differentially to transpresented IL-15. T(CM) CD8(+) T cells undergo Ag-independent proliferation in response to transpresented IL-15 alone, whereas T(EM) CD8(+) T cells are relatively unresponsive to transpresented IL-15. Furthermore, upon Ag-specific stimulation, T(CM) CD8(+) T cell responses are enhanced by IL-15 transpresentation, whereas T(EM) CD8(+) T cell responses are only slightly affected, both in vitro and in vivo. Thus, our findings distinguish the role of IL-15 transpresentation in the stimulation of distinct memory CD8(+) T cell subsets, and they also have implications for ex vivo reactivation and expansion of Ag-experienced CD8(+) T cells for immunotherapeutic approaches.  相似文献   

5.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

6.
Memory CD8+ T cells protect dendritic cells from CTL killing   总被引:1,自引:0,他引:1  
CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.  相似文献   

7.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

8.
Despite recent gains in knowledge regarding CD1d-restricted NKT cells, very little is understood of non-CD1d-restricted NKT cells such as CD8(+)NK1.1(+) T cells, in part because of the very small proportion of these cells in the periphery. In this study we took advantage of the high number of CD8(+)NK1.1(+) T cells in IL-15-transgenic mice to characterize this T cell population. In the IL-15-transgenic mice, the absolute number of CD1d-tetramer(+) NKT cells did not increase, although IL-15 has been shown to play a critical role in the development and expansion of these cells. The CD8(+)NK1.1(+) T cells in the IL-15-transgenic mice did not react with CD1d-tetramer. Approximately 50% of CD8(+)NK1.1(+) T cells were CD8alphaalpha. In contrast to CD4(+)NK1.1(+) T cells, which were mostly CD1d-restricted NKT cells and of which approximately 70% were CD69(+)CD44(+), approximately 70% of CD8(+)NK1.1(+) T cells were CD69(-)CD44(+). We could also expand similar CD8alphaalphaNK1.1(+) T cells but not CD4(+) NKT cells from CD8alpha(+)beta(-) bone marrow cells cultured ex vivo with IL-15. These results indicate that the increased CD8alphaalphaNK1.1(+) T cells are not activated conventional CD8(+) T cells and do not arise from conventional CD8alphabeta precursors. CD8alphaalphaNK1.1(+) T cells produced very large amounts of IFN-gamma and degranulated upon TCR activation. These results suggest that high levels of IL-15 induce expansion or differentiation of a novel NK1.1(+) T cell subset, CD8alphaalphaNK1.1(+) T cells, and that IL-15-transgenic mice may be a useful resource for studying the functional relevance of CD8(+)NK1.1(+) T cells.  相似文献   

9.
10.
IL-15 promotes the survival of naive and memory phenotype CD8+ T cells   总被引:18,自引:0,他引:18  
IL-15 stimulates the proliferation of memory phenotype CD44(high)CD8(+) T cells and is thought to play a key role in regulating the turnover of these cells in vivo. We have investigated whether IL-15 also has the capacity to affect the life span of naive phenotype (CD44(low)) CD8(+) T cells. We report that IL-15 promotes the survival of both CD44(low) and CD44(high) CD8(+) T cells, doing so at much lower concentrations than required to induce proliferation of CD44(high) cells. Rescue from apoptosis was associated with the up-regulation of Bcl-2 in both cell types, whereas elevated expression of Bcl-x(L) was observed among CD44(high) but not CD44(low) CD8(+) cells. An investigation into the role of IL-15R subunits in mediating the effects of IL-15 revealed distinct contributions of the alpha- and beta- and gamma-chains. Most strikingly, IL-15R alpha was not essential for either induction of proliferation or promotion of survival by IL-15, but did greatly enhance the sensitivity of cells to low concentrations of IL-15. By contrast, the beta- and gamma-chains of the IL-15R were absolutely required for the proliferative and pro-survival effects of IL-15, although it was not necessary for CD44(high)CD8(+) cells to express higher levels of IL-15R beta than CD44(low) cells to proliferate in response to IL-15. These results show that IL-15 has multiple effects on CD8 T cells and possesses the potential to regulate the life span of naive as well as memory CD8(+) T cells.  相似文献   

11.
The preservation of the replicative life span of memory CD8(+) T cells is vital for long-term immune protection. Although IL-15 plays a key role in the homeostasis of memory CD8(+) T cells, it is unknown whether IL-15 regulates the replicative life span of memory CD8(+) T cells. In this study, we report an analysis of telomerase expression and telomere length in human memory phenotype CD8(+) T cells maintained by IL-15 in vitro. We demonstrate that IL-15 is capable of activating telomerase in memory CD8(+) T cells via Jak3 and PI3K signaling pathways. Furthermore, IL-15 induces a sustained level of telomerase activity over long periods of time, and in turn minimizes telomere loss in memory CD8(+) T cells after substantial cell divisions. These findings suggest that IL-15 activates stable telomerase expression and compensates telomere loss in memory phenotype CD8(+) T cells, and that telomerase may play an important role in memory CD8(+) T cell homeostasis.  相似文献   

12.
Li L  Qiao D  Fu X  Lao S  Zhang X  Wu C 《PloS one》2011,6(8):e23700
Th1 cell-mediated immune responses at the site of active infection are important to restrict the growth of M. tuberculosis (MTB) and for the spontaneous resolution of patients with tuberculous pleurisy (TBP). In the present study, we found that without any stimulation, CD4(+) T cells in pleural fluid cells (PFCs) from patients with TBP expressed significantly higher levels of CD69 than PBMCs from patients with tuberculosis (TB) or healthy donors. CD4(+)CD69(+) T cells expressed T-bet and IL-12Rβ2. After stimulation with MTB-specific antigens, CD4(+)CD69(+) T cells expressed significantly higher levels of IFN-γ, IL-2 and TNF-α than CD4(+)CD69(-) T cells, demonstrating that CD4(+)CD69(+) T cells were MTB-specific Th1 cells. In addition, CD4(+)CD69(+) T cells were mostly polyfunctional Th1 cells that simultaneously produced IFN-γ, IL-2, TNF-α and displayed an effector or effector memory phenotype (CD45RA(-)CCR7(-)CD62L(-)CD27(-)). Moreover, the percentages of CD4(+)CD69(+) T cells were significantly and positively correlated with polyfunctional T cells. Interestingly, sorted CD4(+)CD69(+) but not CD4(+)CD69(-) fractions by flow cytometry produced IFN-γ, IL-2 and TNF-α that were significantly regulated by CD4(+)CD25(+) Treg cells. Taken together, based on the expression of CD69, we found a direct quantitative and qualitative method to detect and evaluate the in vivo generated MTB-specific polyfunctional CD4(+) T cells in PFCs from patients with TBP. This method can be used for the potential diagnosis and enrichment or isolation of MTB-specific Th1 cells in the investigations.  相似文献   

13.
Upon adoptive transfer into histocompatible mice, naive CD8(+) T cells stimulated ex vivo by TCR+IL-4 turn into long-lived functional memory cells. The liver contains a large number of so formed memory CD8(+) T cells, referred to as liver memory T cells (T(lm)) in the form of cell clusters. The CD62L(low) expression and nonlymphoid tissue distribution of T(lm) cells are similar to effector memory (T(em)) cells, yet their deficient cytotoxicity and IFN-γ inducibility are unlike T(em) cells. Adoptive transfer of admixtures of TCR+IL-4-activated Vβ8(+) and Vβ5(+) CD8(+) T cells into congenic hosts reveals T(lm) clusters that are composed of all Vβ5(+) or Vβ8(+), not mixed Vβ5(+)/Vβ8(+) cells, indicating that T(lm) clusters are formed by clonal expansion. Clonally expanded CD8(+) T cell clusters are also seen in the liver of Listeria monocytogenes-immune mice. T(lm) clusters closely associate with hepatic stellate cells and their formation is IL-15/IL-15R-dependent. CD62L(low) T(LM) cells can home to the liver and secondary lymphoid tissues, remain CD62L(low), or acquire central memory (T(cm))-characteristic CD62L(hi) expression. Our findings show the liver as a major site of CD8(+) memory T cell growth and that T(lm) cells contribute to the pool of peripheral memory cells. These previously unappreciated T(lm) characteristics indicate the inadequacy of the current T(em)/T(cm) classification scheme and help ongoing efforts aimed at establishing a unifying memory T cell development pathway. Lastly, our finding of T(lm) clusters suggests caution against interpreting focal lymphocyte infiltration in clinical settings as pathology and not normal physiology.  相似文献   

14.
15.
The majority of acute hepatitis C virus (HCV) infections progress to chronicity and progressive liver damage. Alpha interferon (IFN-alpha) antiviral therapy achieves the highest rate of success when IFN-alpha is administered early during the acute phase, but the underlying mechanisms are unknown. We used a panel of major histocompatibility complex class I tetramers to monitor the phenotypic and functional signatures of HCV-specific T cells during acute HCV infection with different infection outcomes and during early IFN therapy. We demonstrate that spontaneous resolution correlates with the early development of polyfunctional (IFN-gamma- and IL-2-producing and CD107a(+)) virus-specific CD8(+) T cells. These polyfunctional T cells are distinguished by the expression of CD127 and Bcl-2 and represent a transitional memory T-cell subset that exhibits the phenotypic and functional signatures of both central and effector memory T cells. In contrast, HCV-specific CD8(+) T cells in acute infections evolving to chronicity expressed low levels of CD127 and Bcl-2, exhibited diminished proliferation and cytokine production, and eventually disappeared from the periphery. Early therapeutic intervention with pegylated IFN-alpha rescued polyfunctional memory T cells expressing high levels of CD127 and Bcl-2. These cells were detectable for up to 1 year following discontinuation of therapy. Our results suggest that the polyfunctionality of HCV-specific T cells can be predictive of the outcome of acute HCV infection and that early therapeutic intervention can reconstitute the pool of long-lived polyfunctional memory T cells.  相似文献   

16.
We previously reported that resident gammadelta T cells in the peritoneal cavity rapidly produced IL-17 in response to Escherichia coli infection to mobilize neutrophils. We found in this study that the IL-17-producing gammadelta T cells did not produce IFN-gamma or IL-4, similar to Th17 cells. IL-17-producing gammadelta T cells specifically express CD25 but not CD122, whereas CD122(+) gammadelta T cells produced IFN-gamma. IL-17-producing gammadelta T cells were decreased but still present in IL-2- or CD25-deficient mice, suggesting a role of IL-2 for their maintenance. IFN-gamma-producing CD122(+) gammadelta T cells were selectively decreased in IL-15-deficient mice. Surprisingly, IL-17-producing gammadelta T cells were already detected in the thymus, although CD25 was not expressed on the intrathymic IL-17-producing gammadelta T cells. The number of thymic IL-17-producing gammadelta T cells was peaked at perinatal period and decreased thereafter, coincided with the developmental kinetics of Vgamma6(+) Vdelta1(+) gammadelta T cells. The number of IL-17-producing gammadelta T cells was decreased in fetal thymus of Vdelta1-deficient mice, whereas Vgamma5(+) fetal thymocytes in normal mice did not produce IL-17. Thus, it was revealed that the fetal thymus-derived Vgamma6(+) Vdelta1(+) T cells functionally differentiate to produce IL-17 within thymus and thereafter express CD25 to be maintained in the periphery.  相似文献   

17.
Accumulation of CD28(null)CD8+ T cells and the defects of these cells in response to antigenic stimulation are the hallmarks of age-associated decline of T cell function. However, the mechanism of these age-associated changes is not fully understood. In this study, we report an analysis of the growth of human CD28(null) and CD28+CD8+ memory T cells in response to homeostatic cytokine IL-15 in vitro. We showed that 1) there was no proliferative defect of CD28(null)CD8+ memory T cells in response to IL-15 compared with their CD28+ counterparts; 2) stable loss of CD28 expression occurred in those actively dividing CD28+CD8+ memory T cells responding to IL-15; 3) the loss of CD28 was in part mediated by TNF-alpha that was induced by IL-15; and 4) CCL4 (MIP-1beta), also induced by IL-15, had a significant inhibitory effect on the growth of CD28(null) cells, which in turn down-regulated their expression of CCL4 receptor CCR5. Together, these findings demonstrate that CD28(null)CD8+ memory T cells proliferate normally in response to IL-15 and that IL-15 and its induced cytokines regulate the generation and growth of CD28(null)CD8+ T cells, suggesting a possible role of IL-15 in the increase in CD28(null)CD8+ T cells that occurs with aging.  相似文献   

18.
The role of interactions between tumor cells and autologous immunocompetent cells, the impact on the modulation of the activity of T CD4(+) and CD8(+) lymphocytes, as well as the influence on the regulation and determination of antitumor cellular immune response in patients with head and neck squamous cell carcinomas (HNSCC) is not completely clear. The aim of this study was to analyze early and late activation antigens expression on T cells subpopulations modified under the influence of the presence of cancer cells to investigate the regulatory mechanisms of the local cellular immune response in carcinoma of the larynx. Cytofluorymetric analysis of the early (CD69(+), CD71(+)) and late activation markers (CD25(+) (high), CD26(+), HLA/DR(+)) expression on T CD3(+)CD4(+) and CD3(+)CD8(+) cells subpopulations in mixed cellular cultures of freshly isolated tumor cells (MLTMC) and non-cancerous normal epithelial cells (MLNCC) with immunocompetent cells was performed in 55 cases of squamous cell laryngeal carcinoma. The whole peripheral blood concentrations of IL-10 and IFN-γ in 21 h and 72 h of experiments were also measured by ELISA. The relationships between the activation markers expression depending on the type of cells used in co-cultures, as well as the level of secreted cytokines, were investigated. Our work has revealed a statistically significant dependence of cytofluorymetric results on the presence of TMC or NCC in mixed cellular cultures. Increased expression of CD69(+), CD71(+) and CD25(+) (high), CD26(+), HLA/DR(+) antigens on T CD3(+)CD4(+) and CD3(+)CD8(+) cells was higher in MLTMC cultures, in comparison with MLNCC. We demonstrated negative significant relationships of IFN-γ and IL-10 secretion with regard to CD4(+)CD69(+), CD8(+)CD69(+), CD4(+)CD71(+), CD8(+)CD71(+) antigens expression in 21 h of experiments without mitogenic stimulation. Furthermore, this study revealed negative significant relationships of IFN-g secretion with regard to CD4(+)HLA/DR(+) and CD8(+)HLA/DR(+) as well as between IL-10 concentration and CD4(+)HLA/DR(+) in trials without PHA stimulation. Our findings have confirmed a key role for tumor cells in determining the function of T cells involved in the immunological processes and impact of neoplastic cells on modulating the activity of T CD4(+) and CD8(+) lymphocytes in laryngeal carcinoma.  相似文献   

19.
CD25-expressing CD8+ T cells are potent memory cells in old age   总被引:3,自引:0,他引:3  
We have recently described an IL-2/IL-4-producing CD8+CD25+ non-regulatory memory T cell population that occurs in a subgroup of healthy elderly persons who characteristically still have a good humoral response after vaccination. The present study addresses this specific T cell subset and investigates its origin, clonal composition, Ag specificity, and replicative history. We demonstrate that CD8+CD25+ memory T cells frequently exhibit a CD4+CD8+ double-positive phenotype. The expression of the CD8 alphabeta molecule and the occurrence of signal-joint TCR rearrangement excision circles suggest a thymic origin of these cells. They also have longer telomeres than their CD8+CD25- memory counterparts, thus indicating a shorter replicative history. CD8+CD25+ memory T cells display a polyclonal TCR repertoire and respond to IL-2 as well as to a panel of different Ags, whereas the CD8+CD25- memory T cell population has a more restricted TCR diversity, responds to fewer Ags, and does not proliferate in response to stimulation with IL-2. Molecular tracking of specific clones with clonotypic primers reveals that the same clones occur in CD8+CD25+ and CD8+CD25- memory T cell populations, demonstrating a lineage relationship between CD25+ and CD25- memory CD8+ T cells. Our results suggest that CD25-expressing memory T cells represent an early stage in the differentiation of CD8+ cells. Accumulation of these cells in elderly persons appears to be a prerequisite of intact immune responsiveness in the absence of naive T cells in old age.  相似文献   

20.
Effector memory T cells are effective in controlling acute infections, but central memory T cells play a key role in long-lasting protection against viruses and tumors. In vivo/in vitro challenge by Ag commonly supports the generation of effector memory T cells with limited longevity. To our knowledge, this study demonstrates for the first time in the human system and under rechallenge conditions that targeting IL-2R by partial mammalian target of rapamycin inhibition or blocking IL-2Rα enriches human CD4(+)/CD8(+) central memory T cells within the virus-specific T cell product associated with enhanced functionality (i.e., multicytokine secretors, including IL-2; enhanced CD137 and CD107a expression on CD8(+) and CD4(+) T cells, respectively; and killing infected target cells). Remarkably, the effects on CD8(+) T cells are mainly mediated via the enhancement of CD4(+) T cell function. The data reveal new insights into the role of CD4(+) T cell support for the quality of CD8(+) T cell memory, even under rechallenge conditions. Moreover, our method offers a new approach to improve the long-lasting efficacy of adoptive T cell therapy in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号