首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugation of ubiquitin-like protein Nedd8 to cullins (neddylation) is essential for the function of cullin-RING ubiquitin ligases (CRLs). Here, we show that neddylation stimulates CRL activity by multiple mechanisms. For the initiator ubiquitin, the major effect is to bridge the approximately 50 A gap between naked substrate and E2 approximately Ub bound to SCF. The gap between the acceptor lysine of ubiquitinated substrate and E2 approximately Ub is much smaller, and, consequentially, the impact of neddylation on transfer of subsequent ubiquitins by Cdc34 arises primarily from improved E2 recruitment and enhanced amide bond formation in the E2 active site. The combined effects of neddylation greatly enhance the probability that a substrate molecule acquires >or= 4 ubiquitins in a single encounter with a CRL. The surprisingly diverse effects of Nedd8 conjugation underscore the complexity of CRL regulation and suggest that modification of other ubiquitin ligases with ubiquitin or ubiquitin-like proteins may likewise have major functional consequences.  相似文献   

2.
《Cell》2023,186(9):1895-1911.e21
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.  相似文献   

5.
The SCF E3 ubiquitin ligases select specific proteins for ubiquitination (and typically destruction) by coupling variable adaptor (F box) proteins that bind protein substrates to a conserved catalytic engine containing a cullin, Cul1, and the Rbx1/Roc1 RING finger protein. A new crystal structure of the SCF(Skp2) ubiquitin ligase shows the molecular organization of this complex and raises important questions as to how substrate ubiquitination is accomplished.  相似文献   

6.
The SCF ubiquitin ligase: insights into a molecular machine   总被引:10,自引:0,他引:10  
Ubiquitin ligases are well suited to regulate molecular networks that operate on a post-translational timescale. The F-box family of proteins - which are the substrate-recognition components of the Skp1-Cul1-F-box-protein (SCF) ubiquitin ligase - are important players in many mammalian functions. Here we explore a unifying and structurally detailed view of SCF-mediated proteolytic control of cellular processes that has been revealed by recent studies.  相似文献   

7.
Comment on: Kawabe H, Neeb A, Dimova K, Young SM Jr, Takeda M, Katsurabayashi S, et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65:358-72.  相似文献   

8.
Human Nedd4 ubiquitin ligase is involved in protein trafficking, signal transduction and oncogenesis. Nedd4 with an inactive WW4 domain is toxic to yeast cells. We report here that actin cytoskeleton is abnormal in yeast cells expressing the NEDD4 or NEDD4w4 gene and these cells are more sensitive to Latrunculin A, an actin-depolymerizing drug. These phenotypes are less pronounced when a mutation inactivating the catalytic domain of the ligase has been introduced. In contrast, overexpression of the LAS17 gene, encoding an activator of the Arp2/3 actin nucleating complex, is detrimental to NEDD4w4-expressing cells. The level of Las17p is increased in cells overproducing Nedd4w4 and this depends partially on its catalytic domain. Expression of genes encoding Nedd4 variants, like overexpression of LAS17, suppresses the growth defect of the arp2-1 strain. Our results suggest that human Nedd4 ligase inhibits yeast cell growth by disturbing the actin cytoskeleton, in part by increasing Las17p level, and that Nedd4 ubiquitination targets may include actin cytoskeleton-associated proteins conserved in evolution.  相似文献   

9.
The duplication of the centrosome is a key event in the cell-division cycle. Although defects in centrosome duplication are thought to contribute to genomic instability [1-3] and are a hallmark of certain transformed cells and human cancer [4-6], the mechanism responsible for centrosome duplication is not understood. Recent experiments have established that centrosome duplication requires the activity of cyclin-dependent kinase 2 (Cdk2) and cyclins E and A [7-9]. The stability of cyclin E is regulated by the ubiquitin ligase SCF, which is a protein complex composed of Skp1, Cdc53 (Cullin) and F-box proteins [10-12]. The Skp1 and Cullin components have been detected on mammalian centrosomes, and shown to be essential for centrosome duplication and separation in Xenopus [13]. Here, we report that Slimb, an F-box protein that targets proteins to the SCFcomplex [14,15], plays a role in limiting centrosome replication. We found that, in the fruit fly Drosophila, the hypomorphic mutation slimb(crd) causes the appearance of additional centrosomes and mitotic defects in mutant larval neuroblasts.  相似文献   

10.
E3 ubiquitin ligase Cbl-b plays a crucial role in T cell activation and tolerance induction. However, the molecular mechanism by which Cbl-b inhibits T cell activation remains unclear. Here, we report that Cbl-b does not inhibit PI3K but rather suppresses TCR/CD28-induced inactivation of Pten. The elevated Akt activity in Cbl-b(-/-) T cells is therefore due to heightened Pten inactivation. Suppression of Pten inactivation in T cells by Cbl-b is achieved by impeding the association of Pten with Nedd4, which targets Pten K13 for K63-linked polyubiquitination. Consistent with this finding, introducing Nedd4 deficiency into Cbl-b(-/-) mice abrogates hyper-T cell responses caused by the loss of Cbl-b. Hence, our data demonstrate that Cbl-b inhibits T cell activation by suppressing Pten inactivation independently of its ubiquitin ligase activity.  相似文献   

11.
Lysine 48-linked polyubiquitin chains are the principle signal for targeting proteins for degradation by the 26 S proteasome. Here we report that the conjugation of Nedd8 to ROC1-CUL1, a subcomplex of the SCF-ROC1 E3 ubiquitin ligase, selectively stimulates Cdc34-catalyzed lysine 48-linked multiubiquitin chain assembly. We have further demonstrated that separate regions within the human Cdc34 C-terminal tail are responsible for multiubiquitin chain assembly and for physical interactions with the Nedd8-conjugated ROC1-CUL1 to assemble extensive ubiquitin polymers. Structural comparisons between Nedd8 and ubiquitin reveal that six charged residues (Lys4, Glu12, Glu14, Arg25, Glu28, and Glu31) are uniquely present on the surface of Nedd8. Replacement of each of the six residues with the corresponding amino acid in ubiquitin decreases the ability of Nedd8 to activate the ubiquitin ligase activity of ROC1-CUL1. Moreover, maintenance of the proper charges at amino acid positions 14 and 25 are necessary for retaining wild type levels of activity, whereas introduction of the opposite charges at these positions abolishes the Nedd8 activation function. These results suggest that Nedd8 charged surface residues mediate the activation of ROC1-CUL1 to specifically support Cdc34-catalyzed ubiquitin polymerization.  相似文献   

12.
Many proteins are targeted to proteasome degradation by a family of E3 ubiquitin ligases, termed SCF complexes, that link substrate proteins to an E2 ubiquitin-conjugating enzyme. SCFs are composed of three core proteins-Skp1, Cdc53/Cull, Rbx1/Hrt1-and a substrate specific F-box protein. We have identified in Drosophila melanogaster the closest homologues to the human components of the SCF(betaTrCP) complex and the E2 ubiquitin-conjugating enzyme UbcH5. We show that putative Drosophila SCF core subunits dSkpA and dRbx1 both interact directly with dCu11 and the F-box protein Slmb. We also describe the direct interaction of the UbcH5 related protein UbcD1 with dCul1 and Slmb. In addition, a functional complementation test performed on a Saccharomyces cerevisiae Hrt1p-deficient mutant showed that Drosophila Rbx1 is able to restore the yeast cells viability. Our results suggest that dRbx1, dSkpA, dCullin1, and Slimb proteins are components of a Drosophila SCF complex that functions in combination with the ubiquitin conjugating enzyme UbcD1.  相似文献   

13.
14.
15.
Mdm2 is a member of the RING finger family of ubiquitin ligases and is best known for its role in targeting the tumor suppressor p53 for ubiquitination and degradation. Mdm2 can bind to itself and to the structurally related protein MdmX, and these interactions involve the RING finger domain of Mdm2 and MdmX, respectively. In this study, we performed a mutational analysis of the RING finger domain of Mdm2, and we identified several amino acid residues that are important for Mdm2 to exert its ubiquitin ligase function. Mutation of some of these residues interfered with the Mdm2-Mdm2 interaction indicating that a homomeric complex represents the active form of Mdm2. Mutation of other residues did not detectably affect the ability of Mdm2 to interact with itself but reduced the ability of Mdm2 to interact with UbcH5. Remarkably, MdmX efficiently rescued the ubiquitin ligase activity of the latter Mdm2 mutants in vitro and within cells. Because the interaction of Mdm2 with MdmX is more stable than the Mdm2-Mdm2 interaction, this suggests that Mdm2-MdmX complexes play a prominent role in p53 ubiquitination in vivo. Furthermore, we show that, similar to Mdm2, the Mdm2-MdmX complex has Nedd8 ligase activity and that all mutations that affect the ubiquitin ligase activity of Mdm2 also affect its Nedd8 ligase activity. From a mechanistic perspective, this suggests that the actual function of Mdm2 and Mdm2-MdmX, respectively, in p53 ubiquitination and in p53 neddylation is similar for both processes.  相似文献   

16.
Cullin-RING ligases (CRLs) compose the largest class of E3 ubiquitin ligases. CRLs are modular, multisubunit enzymes, comprising interchangeable substrate receptors dedicated to particular Cullin-RING catalytic cores. Recent structural studies have revealed numerous ways in which CRL E3 ligase activities are controlled, including multimodal E3 ligase activation by covalent attachment of the ubiquitin-like protein NEDD8, inhibition of CRL assembly/activity by CAND1, and several mechanisms of regulated substrate recruitment. These features highlight the potential for CRL activities to be tuned in responses to diverse cellular cues, and for modulating CRL functions through small-molecule agonists or antagonists. As the second installment of a two-review series, this article focuses on recent structural studies advancing our knowledge of how CRL activities are regulated.  相似文献   

17.
Radioiodinated histone H3 was incubated with ubiquitin, the ubiquitin-activating enzyme E1, and one of three ubiquitin carrier proteins, reticulocyte E2(20K) or E2(32K) or the yeast RAD6 product. Although the resulting ubiquitin-histone conjugates were synthesized in the absence of the substrate-binding protein E3, they were nevertheless degraded by purified rabbit reticulocyte 26 S protease. In contrast, unmodified histone H3 remained intact upon challenge with the 26 S ubiquitin/ATP-dependent enzyme. Conjugates produced by the RAD6 protein were better proteolytic substrates than those formed by reticulocyte E2 unless ubiquitin molecules with altered lysines were used for conjugate synthesis. Substitution of methylated ubiquitin or ubiquitin molecules in which lysine 48 was converted to arginine by site-directed mutation produced histone conjugates that were degraded at slow but measurable rates. Since methylated ubiquitin molecules are incapable of forming branched polyubiquitin chains, these results demonstrate that neither ubiquitin "trees" nor the substrate binding factor E3 is absolutely required for ubiquitin-dependent degradation of histone H3 in vitro.  相似文献   

18.
The conjugation of proteins with the ubiquitin-like protein Nedd8 is an essential cellular process and an important anti-cancer therapeutic target. The major known role of Nedd8 is the attachment to and activation of Cullin RING E3 ubiquitin ligases (CRL). The attachment of Nedd8 to its substrates occurs via a process analogous to ubiquitin transfer, involving a Nedd8 E1 activating enzyme and a Nedd8 E2 conjugating enzyme, Ubc12, which transfers Nedd8 onto lysine residues of target proteins. In this study, we utilize dominant-negative Ubc12 (dnUbc12) and the Nedd8 E1 inhibitor MLN4924 to inhibit cellular neddylation. We demonstrate that dnUbc12 functions by depleting cellular Nedd8 concentrations. Inhibition of cellular neddylation leads to rapid accumulation of CRL substrates and an enlarged and flattened morphology in HEK293 cells. Inhibiting Nedd8 conjugation also causes abnormalities in the actin cytoskeleton. This is likely at least partially mediated via accumulation of the small GTPase RhoA, a recently identified CRL substrate. We indeed found that siRNA mediated knockdown of RhoA can reverse the morphological changes observed upon inhibition of cellular neddylation. In conclusion, the Nedd8 pathway plays an important role in regulating the actin cytoskeleton and cellular morphology. Dysfunction of the actin cytoskeleton may contribute to the anti-cancer effect of Nedd8 inhibition.  相似文献   

19.
The cullin-RING ubiquitin ligases (CRLs) are the largest family of multi-subunit E3 ligases in eukaryotes, which ubiquitinate protein substrates in numerous cellular pathways. CRLs share a common arched scaffold and a RING domain catalytic subunit, but use different adaptors and substrate receptors to assemble unique E3 machineries. In comparison to the first CRL structure, recent findings have revealed increased complexity in the overall architecture and assembly mode of CRLs, including multi-domain organization, inter-domain flexibility, and subunit dimerization. These features highlight the capacity of CRLs to catalyze protein ubiquitination under distinct cellular contexts and in response to diverse signals. As the first installment of a two-review series, this article will focus on recent advances in our understanding of CRL assembly mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号