首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic analysis of the attenuation phenotype of poliovirus type 1.   总被引:10,自引:38,他引:10       下载免费PDF全文
Seven different recombinant viruses from the virulent Mahoney and the attenuated Sabin parental strains of type 1 poliovirus were constructed in vitro by using infectious cDNA clones. Monkey neurovirulence tests (lesion score, spread value, and incidence of paralysis) using these recombinant viruses revealed that the loci influencing attenuation were spread over several areas of the viral genome, including the 5' noncoding region. In vitro phenotypic marker tests corresponding to temperature sensitivity of growth (rct marker), plaque size, and dependency of growth on bicarbonate concentration (d marker) were performed to identify the genomic loci of these determinants and to investigate their correlation with attenuation. Determinants of temperature sensitivity mapped to many areas of the viral genome and expressed strong but not perfect correlation with attenuation. Recombinant viruses with Sabin-derived capsid proteins showed a small-plaque phenotype, and their growth was strongly dependent on bicarbonate concentration, suggesting that these determinants map to the genomic region encoding the viral capsid proteins. Plaque size and the d marker, however, were found to be poor indicators of attenuation. Moreover, virion surface characteristics such as immunogenicity and antigenicity had little or no correlation with neurovirulence. Nevertheless, viruses carrying Sabin-derived capsid proteins had an apparent tendency to exhibit less neurovirulence in tests on monkeys compared with recombinants carrying Mahoney-derived capsid proteins. Our results suggest that the extent of viral multiplication in the central nervous system of the test animals might be one of the most important factors determining neurovirulence. Moreover, we conclude that the expression of the attenuated phenotype of the Sabin 1 strain of poliovirus is the result of several different biological characteristics. Finally, none of the in vitro phenotypic markers alone can serve as a good indicator of neurovirulence or attenuation.  相似文献   

2.
The internal ribosomal entry site (IRES) of picornavirus genomes serves as the nucleation site of a highly structured ribonucleoprotein complex essential to the binding of the 40S ribosomal subunit and initiation of viral protein translation. The transition from naked RNA to a functional "IRESome" complex are poorly understood, involving the folding of secondary and tertiary RNA structure, facilitated by a tightly concerted binding of various host cell proteins that are commonly referred to as IRES trans-acting factors (ITAFs). Here we have investigated the influence of one ITAF, the polypyrimidine tract-binding protein 1 (PTB1), on the tropism of PV1(RIPO), a chimeric poliovirus in which translation of the poliovirus polyprotein is under the control of a human rhinovirus type 2 (HRV2) IRES element. We show that PV1(RIPO)''s growth defect in restrictive mouse cells is partly due to the inability of its IRES to interact with endogenous murine PTB. Over-expression of human PTB1 stimulated the HRV2 IRES-mediated translation, resulting in increased growth of PV1(RIPO) in murine cells and human neuronal SK-N-MC cells. Mutations within the PV1(RIPO) IRES, selected to grow in restrictive mouse cells, eliminated the human PTB1 supplementation requirement, by restoring the ability of the IRES to interact with endogenous murine PTB. In combination with our previous findings these results give a compelling insight into the thermodynamic behavior of IRES structures. We have uncovered three distinct thermodynamic aspects of IRES formation which may independently contribute to overcome the observed PV1(RIPO) IRES block by lowering the free energy δG of the IRESome formation, and stabilizing the correct and functional structure: 1) lowering the growth temperature, 2) modifying the complement of ITAFs in restricted cells, or 3) selection of adaptive mutations. All three mechanisms can conceivably modulate the thermodynamics of RNA folding, and thus facilitate and stabilize the functional IRES structure.  相似文献   

3.
A dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models. Clinical application of this principle depends on unequivocal demonstration of safety in primate models for paralytic poliomyelitis. We conducted extensive dose-range-finding, toxicity, biodistribution, shedding, and neutralizing antibody studies of the prototype oncolytic poliovirus recombinant, PVS-RIPO, after intrathalamic inoculation in Macaca fascicularis. These studies suggest that intracerebral PVS-RIPO inoculation does not lead to viral propagation in the central nervous system (CNS), does not cause histopathological CNS lesions or neurological symptoms that can be attributed to the virus, is not associated with extraneural virus dissemination or replication and does not induce shedding of virus with stool. Intrathalamic PVS-RIPO inoculation induced neutralizing antibody responses against poliovirus serotype 1 in all animals studied.  相似文献   

4.
The crystal structure of V510, a chimeric type 2/type 1 poliovirus, has been determined at 2.6 A resolution. Unlike the parental Mahoney strain of type 1 poliovirus, V510 is able to replicate in the mouse central nervous system, due entirely to the replacement of six amino acids in the exposed BC loop of capsid protein VP1. Significant structural differences between the two strains cluster in a major antigenic site of the virus, located at the apex of the radial projection which surrounds the viral five-fold axis. Residues implicated in the mouse-virulence of poliovirus by genetic studies are located in this area, and include the residues which are responsible for stabilizing the conformation of the BC loop in V510. Despite evidence that this area is not involved in receptor binding in cultured primate cells, the genetic and structural observations suggest that this area plays a critical role in receptor interactions in the mouse central nervous system. These results provide a structural framework for further investigation of the molecular determinants of host and tissue tropism in viruses.  相似文献   

5.
Crystal structure of human rhinovirus serotype 1A (HRV1A)   总被引:21,自引:0,他引:21  
The structure of human rhinovirus 1A (HRV1A) has been determined to 3.2 A resolution using phase refinement and extension by symmetry averaging starting with phases at 5 A resolution calculated from the known human rhinovirus 14 (HRV14) structure. The polypeptide backbone structures of HRV1A and HRV14 are similar, but the exposed surfaces are rather different. Differential charge distribution of amino acid residues in the "canyon", the putative receptor binding site, provides a possible explanation for the difference in minor versus major receptor group specificities, represented by HRV1A and HRV14, respectively. The hydrophobic pocket in VP1, into which antiviral compounds bind, is in an "open" conformation similar to that observed in drug-bound HRV14. Drug binding in HRV1A does not induce extensive conformational changes, in contrast to the case of HRV14.  相似文献   

6.
Internal ribosomal entry sites (IRESs) can function in foreign viral genomes or in artificial dicistronic mRNAs. We describe an interaction between the wild-type hepatitis C virus (HCV)-specific sequence and the poliovirus (PV) 5'-terminal cloverleaf in a PV/HCV chimeric virus (containing the HCV IRES), resulting in a replication phenotype. Either a point mutation at nucleotide (nt) 29 or a deletion up to nt 40 in the HCV 5' nontranslated region relieved the replication block, yielding PV/HCV variants replicating to high titers. Fortuitous yet crippling interactions between an IRES and surrounding heterologous RNA must be considered when IRES-based dicistronic expression vectors are being constructed.  相似文献   

7.
8.
A number of recombinants between the virulent Mahoney and attenuated Sabin strains of type 1 poliovirus were constructed by using infectious cDNA clones of the two strains. To identify a strong neurovirulence determinant(s) residing in the genome region upstream of nucleotide position 1122, these recombinant viruses were subjected to biological tests, including monkey neurovirulence tests. The results of the monkey neurovirulence tests suggested the important contribution of an adenine residue (Mahoney type) at position 480 to the expression of the neurovirulence phenotype of type 1 poliovirus. This nucleotide, however, had only a minor effect, if any, on viral temperature sensitivity. Monkey neurovirulence tests on the recombinant virus whose genome had a guanine residue (Sabin type) at position 480 and variants generated from this recombinant virus in the central nervous system of monkeys strongly suggested that only one nucleotide change, from adenine to guanine, was not sufficient for full expression of the attenuation phenotype encoded by this genome region. These results suggest that the expression of the attenuation phenotype depends on the highly ordered structure formed in the 5' noncoding sequence and that the formation of such a structure is possibly influenced by the nucleotide at position 480. Furthermore, in vitro biological tests performed on viruses recovered from the central nervous system of monkeys injected with a temperature-sensitive recombinant virus showing the small-plaque and d phenotypes revealed that most of the recovered viruses had even higher temperature sensitivities and that all of the recovered viruses that had acquired the large-plaque phenotype had lost the d phenotype to some extent. These results indicate that there may be an unknown selection pressure(s) in the central nervous system and that common determinants might be involved in the expression of the small-plaque and d phenotypes.  相似文献   

9.
Of the 55 point mutations which distinguish the type 1 poliovirus vaccine strain (Sabin 1) from its neurovirulent progenitor (P1/Mahoney), two have been strongly implicated by previous studies as determinants of the attenuation phenotype. A change of an A to a G at position 480, located within the 5' noncoding region, has been suggested to be the major attenuating mutation, analogous to the mutations at positions 481 and 472 in poliovirus types 2 and 3, respectively. In addition, the change of a U to a C at position 6203, resulting in an amino acid change in the polymerase protein 3D, has also been implicated as a determinant of attenuation, albeit to a lesser extent. To assess the contributions of these mutations to attenuation and temperature sensitivity, reciprocal changes were generated at these positions in infectious cDNA clones of Sabin 1 and P1/Mahoney. Assays in tissue culture and primates indicated that the two mutations make some contribution to the temperature sensitivity of the Sabin 1 strain but that neither is a strong determinant of attenuation.  相似文献   

10.
The single base substitution mediated by chimeric RNA/DNA oligonucleotide is a new promising approach of gene therapy for single base mutation diseases. We exploited this approach to render HeLa cells resistant to ouabain by introducing a single base substitution in the alpha 1 subunit of the NA+/K+ ATPase human gene. The chimeric oligonucleotide was administered to HeLa cells by electroporation and the frequency of ouabain resistant cells determined. The results showed that the chimeric RNA/DNA oligonucleotide failed to enhance the frequency of ouabain resistant cells supporting the controversy about the conflicting results of the technique.  相似文献   

11.
A yellow fever virus (YFV)/Japanese encephalitis virus (JEV) chimera in which the structural proteins prM and E of YFV 17D are replaced with those of the JEV SA14-14-2 vaccine strain is under evaluation as a candidate vaccine against Japanese encephalitis. The chimera (YFV/JEV SA14-14-2, or ChimeriVax-JE) is less neurovirulent than is YFV 17D vaccine in mouse and nonhuman primate models (F. Guirakhoo et al., Virology 257:363-372, 1999; T. P. Monath et al., Vaccine 17:1869-1882, 1999). Attenuation depends on the presence of the JEV SA14-14-2 E protein, as shown by the high neurovirulence of an analogous YFV/JEV Nakayama chimera derived from the wild JEV Nakayama strain (T. J. Chambers, A. Nestorowicz, P. W. Mason, and C. M. Rice, J. Virol. 73:3095-3101, 1999). Ten amino acid differences exist between the E proteins of ChimeriVax-JE and the YFV/JEV Nakayama virus, four of which are predicted to be neurovirulence determinants based on various sequence comparisons. To identify residues that are involved in attenuation, a series of intratypic YFV/JEV chimeras containing either single or multiple amino acid substitutions were engineered and tested for mouse neurovirulence. Reversions in at least three distinct clusters were required to restore the neurovirulence typical of the YFV/JEV Nakayama virus. Different combinations of cluster-specific reversions could confer neurovirulence; however, residue 138 of the E protein (E(138)) exhibited a dominant effect. No single amino acid reversion produced a phenotype significantly different from that of the ChimeriVax-JE parent. Together with the known genetic stability of the virus during prolonged cell culture and mouse brain passage, these findings support the candidacy of this experimental vaccine as a novel live-attenuated viral vaccine against Japanese encephalitis.  相似文献   

12.

Background

Human rhinoviruses (HRVs) are the most frequently detected pathogens in acute respiratory tract infections (ARTIs) and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During 2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To catalogue the molecular and clinical features distinguishing the divergent HRV strains, we undertook, for the first time, in silico analyses of all available polyprotein sequences and performed retrospective reviews of the medical records of cases in which variants of the prototype strain, HRV-QPM, had been detected.

Methodology/Principle Findings

Genomic analyses revealed that the six divergent strains, residing within a clade we previously called HRV A2, had the shortest polyprotein of all picornaviruses investigated. Structure-based amino acid alignments identified conserved motifs shared among members of the genus Rhinovirus as well as substantive deletions and insertions unique to the divergent strains. Deletions mostly affected regions encoding proteins traditionally involved in antigenicity and serving as HRV and HEV receptor footprints. Because the HRV A2 strains cannot yet be cultured, we created homology models of predicted HRV-QPM structural proteins. In silico comparisons confirmed that HRV-QPM was most closely related to the major group HRVs. HRV-QPM was most frequently detected in infants with expiratory wheezing or persistent cough who had been admitted to hospital and required supplemental oxygen. It was the only virus detected in 65% of positive individuals. These observations contributed to an objective clinical impact ranging from mild to severe.

Conclusions

The divergent strains did not meet classification requirements for any existing species of the genus Rhinovirus or Enterovirus. HRV A2 strains should be partitioned into at least one new species, putatively called Human rhinovirus C, populated by members detected with high frequency, from individuals with respiratory symptoms requiring hospital admission.  相似文献   

13.
The npgA1 mutation causes defects in the outer layer of the cell wall resulting in a colorless colony. In this study, a temperature-sensitive suppressor of npgA1 named snpA was isolated by UV mutagenesis. The suppressing mutant showed pleiotropic phenotypes in cellular structure and developmental processes when incubated at a temperature of 37 degrees C or above. At 37 degrees C, multiple germ tubes emerged from germinating conidia. Moreover, at 42 degrees C conidia germination was delayed more than 12h and hyphal growth was strongly inhibited. The suppressor allele, snpA6, is recessive and maps to the linkage group III. A gene complementing the mutation was identified employing the chromosome III-specific cosmid library. Sequencing analysis revealed that the snpA gene encodes the eukaryotic polypeptide release factor, eRF1. The snpA6 allele contains a G-A mutation resulting in SnpA(E117K), which may allow read-through of the nonsense mutation in the npgA1 allele in a similar manner to the yeast omni-potent suppressor SUP45 and SUP35.  相似文献   

14.
To examine the effects of bafilomycin A(1), a blocker of vacuolar H(+)-ATPase, on rhinovirus (RV) infection in the airway epithelium, primary cultures of human tracheal epithelial cells were infected with RV14. Viral infection was confirmed by showing that viral RNA in the infected cells and the viral titers in the supernatants of infected cells increased with time. RV14 infection upregulated the production of cytokines and mRNA of intercellular adhesion molecule (ICAM)-1 in epithelial cells. Bafilomycin A(1) reduced the viral titers of RV14 and inhibited the production of cytokines and ICAM-1 before and after RV14 infection. Bafilomycin A(1) reduced susceptibility of epithelial cells to RV14 infection. RV14 increased activated nuclear factor-kappaB in the cells, and bafilomycin A(1) reduced the activated nuclear factor-kappaB. Bafilomycin A(1) decreased the number of acidic endosomes in the epithelial cells. These results suggest that bafilomycin A(1) may inhibit infection by RV14 by not only blocking RV RNA entry into the endosomes but also reducing ICAM-1 expression in the epithelial cells. Bafilomycin A(1) may therefore modulate airway inflammation after RV infection.  相似文献   

15.
Human rhinoviruses (HRV) of the minor receptor group use several members of the low-density lipoprotein receptor superfamily for cell entry. These proteins are evolutionarily highly conserved throughout species and are almost ubiquitously expressed. Their common building blocks, cysteine-rich ligand binding repeats about 40 amino acids in length, exhibit considerable sequence similarity. Various numbers of these repeats are present in the different receptors. We here demonstrate that HRV type 1A (HRV1A) replicates in mouse cells without adaptation. Furthermore, although closely related to HRV2, it fails to bind to the human low-density lipoprotein receptor but recognizes the murine protein, whereas HRV2 binds equally well to both homologues. This difference went unnoticed due to the presence of other receptors, such as the low-density lipoprotein receptor-related protein, which allow species-independent attachment. The species specificity of HRV1A reported here will aid in defining amino acid residues establishing the contact between the viral surface and the receptor.  相似文献   

16.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

17.
The attenuated Sabin strain of poliovirus type 1 (PV-1) differs from the neurovirulent PV-1 Mahoney strain by 55 nucleotide mutations. Only one of these mutations (A-480-->G, in the 5' noncoding (5' NC) region of the genome, is well characterized, and it confers a strong attenuating effect. We attempted to identify genetic attenuation determinants in the 3'-terminal part of the Sabin 1 genome including the 3D polymerase (3Dpol) gene and the 3' NC region. Previous studies suggested that some of the 11 mutations in this region of the Sabin 1 genome, and in particular a mutation in the polymerase gene (U-6203-->C, Tyr-73-->His), are involved to some extent in the attenuation of PV-1. We analyzed the attenuating effect in the mouse model by using the mouse-adapted PV-1/PV-2 chimeric strain v510 (a Mahoney strain carrying nine amino acids of the VP1 capsid protein from the Lansing strain of PV-2). Mutagenesis of locus 6203 was performed on the original v510 (U-6203-->C) and also on a hybrid v510/Sabin 1 (C-6203-->U) carrying the downstream 1,840 nucleotides of the Sabin 1 genome including the 3Dpol and 3' NC regions. Statistical analysis of disease incidence and time to disease onset in numerous mice inoculated with these strains strongly suggested that nucleotide C-6203 is involved in the attenuation of the Sabin 1 strain. Results also suggested that, among the mutations located in the 3Dpol and 3' NC regions, nucleotide C-6203 may be the principal or the only one to be involved in attenuation in this mouse model. We also found that the effect of C-6203 was weaker than that of nucleotide G-480; the two nucleotides acted independently and may have a cumulative effect on attenuation. The U-6203-->C substitution also appeared to contribute to the thermosensitivity of the Sabin 1 strain.  相似文献   

18.
A model has been built of the amino-terminal domain of the intercellular adhesion molecule-1 (ICAM-1), the receptor for most human rhinovirus serotypes. The model was based on sequence and presumed structural homology to immunoglobulin constant domains. It fits well into the putative receptor attachment site, the canyon, on the human rhinovirus-14 (HRV14) surface in a manner consistent with most of the mutational data for ICAM-1 (Staunton, D. E., Dustin, M. L., Erickson, H. P., Springer, T. A. Cell, in press, 1989) and HRV14 (Colonno, R. J., Condra, J. H., Mizutani, S., Callahan, P. L., Davies, M. E., Murcko, M. A. Proc. Natl. Acad. Sci. U.S.A. 85: 5449-5453, 1988).  相似文献   

19.
In eukaryotes, elongation factor 1-alpha (eEF1A) is required during the elongation phase of translation. We observed that a portion of the cellular eEF1A colocalizes with purified peroxisomes from the methylotrophic yeast Hansenula polymorpha. We have isolated two genes (TEF1 and TEF2) that encode eEF1A, and which are constitutively expressed. We observed that overproduction of eEF1A suppressed the peroxisome deficient phenotype of an H. polymorpha pex3-1 mutant, which was not observed in a strain deleted for PEX3. The pex3-1 allele contains a UGG to UGA mutation, thereby truncating Pex3p after amino acid 242, suggesting that the suppression effect might be the result of translational read-through. Consistent with this hypothesis, overexpression of the pex3-1 gene itself (including its now untranslated part) partly restored peroxisome biogenesis in a PEX3 null mutant. Subsequent co-overexpression of TEF2 in this strain fully restored its peroxisome biogenesis defect and resulted in the formation of major amounts of full-length Pex3p, presumably via translational read-through.  相似文献   

20.
S Mochida  H Tsuchiya  K Mori    A Kaji 《Journal of bacteriology》1991,173(8):2600-2607
Rts1 is a multiphenotype drug resistance factor, and one of its phenotypes is temperature-sensitive growth (Tsg) of host bacteria. A 3.65-kb fragment from Rts1 DNA was shown to cause the Tsg phenotype in host cells. This tsg fragment was split by a restriction enzyme, HincII, into four fragments. Two of these fragments were called HincII-S (short) and HincII-L (long), respectively. Each of these two fragments conferred the Tsg phenotype, indicating that, in fact, these two independent regions were responsible for the Tsg phenotype. The HincII-S 783-bp and HincII-L 1,479-bp fragments were sequenced. The region in the HincII-S fragment to which the Tsg phenotype was attributed was narrowed to a 146-bp (nucleotides 1 to 146) fragment by various restriction enzyme digestions. Further digestion of the 146-bp fragment with Bal 31 suggested that the 116-bp (nucleotides 9 to 124) fragment is the minimum sequence required for Tsg. On the other hand, in the HincII-L fragment, a fragment of 249 bp (nucleotides 1210 to 1458) and a fragment of 321 bp (nucleotides 1942 to 2262) contained separate temperature-sensitive growth activity. None of three tsg fragments contained open reading frames. The 249-bp fragment had very weak Tsg activity, while the 321-bp fragment had no Tsg activity. On the other hand, when these two fragments were together in the pUC19 vector, they exhibited very strong Tsg activity equivalent to that of the original 1,479-bp fragment. In addition, two of the 249-bp fragments gave similar, strong Tsg activity. The HincII-L 1,479-bp fragment contained an open reading frame for kanamycin resistance which was found between nucleotides 1423 and 2238. This kanamycin resistance gene sequence was different from that of the reported kanamycin resistance gene of Tn903 at 12 positions which were deduced to change seven amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号