首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的建立基质辅助激光解吸电离飞行时间质谱(MADLI-TOF MS)技术鉴定常见益生菌的实验方法并对MADLI-TOF MS技术的适用性进行初步评价。方法对MADLI-TOF MS技术鉴定常见益生菌过程中各影响因素进行考察,筛选出最佳的实验条件。利用19株供试菌株所得的蛋白指纹图谱对MADLI-TOF MS技术的适用性进行研究。结果建立了MADLI-TOF MS技术鉴定常见益生菌的最佳实验方法。初步证明MADLI-TOF MS技术具备在属、种、亚种以及菌株水平上鉴定常见益生菌的能力。结论建立的实验方法稳定性高、重复性好,可以作为MADLI-TOF MS技术鉴定常见益生菌的参考方法。MADLI-TOF MS技术可以作为常见益生菌鉴定的方法之一。  相似文献   

2.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

3.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

4.
In protein analysis using mass spectrometry, proteins are usually separated by electrophoresis and digested within the gel with proteases such as trypsin. However, analysis of lipid-modified proteins is difficult due to the low recovery of lipid-modified peptide fragments from the gel as well as their low ionization efficiency during mass spectrometry. In this study, we developed a simple extraction method with n-dodecyl-β-d-maltoside following chloroform/methanol extraction that efficiently elutes lipid-modified fragments from gels. This method allowed us to analyze the structure of lipid-modified fragments, suggesting the applicability of the method for analysis of lipid-modified fragments by mass spectrometry.  相似文献   

5.
MOTIVATION: Early cancer detection has always been a major research focus in solid tumor oncology. Early tumor detection can theoretically result in lower stage tumors, more treatable diseases and ultimately higher cure rates with less treatment-related morbidities. Protein mass spectrometry is a potentially powerful tool for early cancer detection. We propose a novel method for sample classification from protein mass spectrometry data. When applied to spectra from both diseased and healthy patients, the 'peak probability contrast' technique provides a list of all common peaks among the spectra, their statistical significance and their relative importance in discriminating between the two groups. We illustrate the method on matrix-assisted laser desorption and ionization mass spectrometry data from a study of ovarian cancers. RESULTS: Compared to other statistical approaches for class prediction, the peak probability contrast method performs as well or better than several methods that require the full spectra, rather than just labelled peaks. It is also much more interpretable biologically. The peak probability contrast method is a potentially useful tool for sample classification from protein mass spectrometry data.  相似文献   

6.
Amide hydrogen/deuterium exchange (H/D exchange) coupled with mass spectrometry has been widely used to analyze the interface of protein-protein interactions, protein conformational changes, protein dynamics and protein-ligand interactions. H/D exchange on the backbone amide positions has been utilized to measure the deuteration rates of the micro-regions in a protein by mass spectrometry(1,2,3). The resolution of this method depends on pepsin digestion of the deuterated protein of interest into peptides that normally range from 3-20 residues. Although the resolution of H/D exchange measured by mass spectrometry is lower than the single residue resolution measured by the Heteronuclear Single Quantum Coherence (HSQC) method of NMR, the mass spectrometry measurement in H/D exchange is not restricted by the size of the protein(4). H/D exchange is carried out in an aqueous solution which maintains protein conformation. We provide a method that utilizes the MALDI-TOF for detection(2), instead of a HPLC/ESI (electrospray ionization)-MS system(5,6). The MALDI-TOF provides accurate mass intensity data for the peptides of the digested protein, in this case protein kinase Pak2 (also called γ-Pak). Proteolysis of Pak 2 is carried out in an offline pepsin digestion. This alternative method, when the user does not have access to a HPLC and pepsin column connected to mass spectrometry, or when the pepsin column on HPLC does not result in an optimal digestion map, for example, the heavily disulfide-bonded secreted Phospholipase A(2;) (sPLA(2;)). Utilizing this method, we successfully monitored changes in the deuteration level during activation of Pak2 by caspase 3 cleavage and autophosphorylation(7,8,9).  相似文献   

7.
Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry.  相似文献   

8.
【目的】革兰氏阳性类芽孢杆菌(Paenibacillus sp.)本身细胞壁的结构特点导致其菌体全蛋白不易获得。本研究选取了3种破碎方法——溶菌酶联合超声破碎法(方法一)、溶菌酶联合SDS热处理破碎法(方法二)、液氮联合超声破碎法(方法三)进行革兰氏阳性菌的细胞破碎,以期获得适于样品菌株基于质谱技术进行蛋白质组学研究的制备方法。【方法】在蛋白样品的制备过程中,对3种不同破碎方法的蛋白提取得率和SDS-PAGE检测分析结果进行比较;随后将3种蛋白样品制备方法的样品用质谱技术进行鉴定,分析不同蛋白样品基于质谱技术鉴定蛋白的差异。【结果】在蛋白样品的制备提取过程中,不同破碎方法的蛋白提取率大致相同。用单因素方差比较3种提取方法质谱鉴定蛋白数的差异性,方法三鉴定的蛋白数最多(2 638个),其次是方法一(2 452个),方法二鉴定的蛋白数最少(2 003个)。进一步用韦恩图分析比较不同提取方法的蛋白鉴定通量差异,综合考虑蛋白提取效率的结果以及液氮研磨法提取蛋白的缺点,最终选取溶菌酶联合超声破碎法(方法一)提取菌株全蛋白作为该菌基于质谱分析其蛋白质组学研究中最适合的方法。最后,对质谱鉴定菌株蛋白包括分子量、等电点、疏水性的基本性质进行分析,发现3种破碎方法质谱鉴定的蛋白与模式菌株多黏类芽孢杆菌(Paenibacillus polymyxa)基因组中预测蛋白的各个组分分布占比基本一致,都保证了菌株蛋白质组数据信息的完整性。【结论】基于质谱技术开展革兰氏阳性类芽孢杆菌(Paenibacillus sp.)的蛋白质组学研究,溶菌酶联合超声破碎法是提取该菌株全蛋白最适合的方法。  相似文献   

9.
As experimental technologies for characterization of proteomes emerge, bioinformatic analysis of the data becomes essential. Separation and identification technologies currently based on two-dimensional gels/mass spectrometry provide the inherent analytical power required. This strategy involves protein spot digestion and accurate mass mapping together with computational interrogation of available data bases for protein functional identification. When either no exact match is found or when the possible matches only partially account for molecular weights actually observed, peptide sequencing by tandem mass spectrometry has emerged as the methodology of choice to provide the basic additional information required. To evaluate the capabilities of bioinformatics methods employed for identifying homologs of a protein of interest, we attempted to identify the major proteins from the 20 S proteasome of Trypanosoma brucei using sequence information determined using mass spectrometry. The results suggest that neither the traditional query engines, BLAST and FASTA, nor specialized software developed for analysis of sequence information obtained by mass spectrometry are able to identify even closely related sequences at statistically significant scores. To address this deficit, new bioinformatics approaches were developed for concomitant use of the multiple fragments of short sequence typically available from methods of tandem mass spectrometry. These approaches rely on the occurrence of congruence across searches of multiple fragments from a single protein. This method resulted in sharply better statistical significance values for correct hits in the data base output relative to that achieved for independent searches using single sequence fragments.  相似文献   

10.
Quantitative high-throughput mass spectrometry has become an established tool to measure relative gene expression proteome-wide. The output of such an experiment usually consists of a list of expression ratios (fold changes) for several thousand proteins between two conditions. However, we observed that individual peptide fold changes may show a significantly different behavior than other peptides from the same protein and that these differences cannot be explained by imprecise measurements. Such outlier peptides can be the consequence of several technical (misidentifications, misquantifications) or biological (post-translational modifications, differential regulation of isoforms) reasons. We developed a method to detect outlier peptides in mass spectrometry data which is able to delineate imprecise measurements from real outlier peptides with high accuracy when the true difference is as small as 1.4 fold. We applied our method to experimental data and investigated the different technical and biological effects that result in outlier peptides. Our method will assist future research to reduce technical bias and can help to identify genes with differentially regulated protein isoforms in high throughput mass spectrometry data.  相似文献   

11.
In this work, a method for improved protein identification of low-abundance proteins using unstained gels, in combination with robotics and matrix-assisted laser desorption/ionization tandem mass spectrometry, has been developed and evaluated. Omitting the silver-staining process resulted in increased protein identification scores, an increase in the number of peptides observed in the MALDI mass spectrum, and improved quality of the tandem mass spectrometry data.  相似文献   

12.
Functional genomics by mass spectrometry   总被引:10,自引:0,他引:10  
Andersen JS  Mann M 《FEBS letters》2000,480(1):25-31
Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene function, mass spectrometry is the method of choice. Mass spectrometry can now identify proteins with very high sensitivity and medium to high throughput. New instrumentation for the analysis of the proteome has been developed including a MALDI hybrid quadrupole time of flight instrument which combines advantages of the mass finger printing and peptide sequencing methods for protein identification. New approaches include the isotopic labeling of proteins to obtain accurate quantitative data by mass spectrometry, methods to analyze peptides derived from crude protein mixtures and approaches to analyze large numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes.  相似文献   

13.
Protein receptor-ligand interactions play important roles in mediating enzyme catalysis, signal transduction, and other protein functions. Immunoaffinity purification followed by mass spectrometry analysis is a common method for identifying protein receptor-ligand complexes. However, it is difficult to distinguish between specific protein binding partners and non-specifically bound proteins that co-purify with the complex. In addition, weakly interacting binding partners may dissociate from the protein receptor-ligand complexes during immunoaffinity purification. The combination of chemical crosslinking, affinity purification, and differential mass spectrometry analysis provides a direct method for capturing stable, weak, and transient protein interactions that occur in vivo and in vitro. This approach enables the identification of functional receptor-ligand binding partners with high confidence. Herein, we describe a differential mass spectrometry approach coupled with in situ chemical crosslinking and immunoaffinity purification for identifying receptor-ligand binding partners. In particular, we identified a functional, counter-ligand structure of the natural killer cell p30-related protein.  相似文献   

14.

Background

The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry.

Methodology and Principal Findings

We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools.

Conclusions and Significance

The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.  相似文献   

15.
液质联用多反应监测法定量目标多肽或蛋白质   总被引:2,自引:0,他引:2  
为建立优化的血浆内源性多肽提取方法,并且构建目标多肽和蛋白质的质谱定量方 法,本研究考察了超滤法、有机溶剂沉淀法和固相萃取法对血浆内源性多肽的提取效果 ,并通过Tricine-SDS-PAGE对提取效果进行比较.通过液相色谱串联质谱多反应监测 (MRM)分析,建立了多肽标准品ESAT-6定量方法,并将ESAT-6定量建立的液相色谱和质谱条件应用于蛋白质的定量,对多肽和蛋白质MRM定量的标准曲线进行了考 察.Tricine-SDS-PAGE结果表明,乙腈沉淀法是最佳的血浆内源性多肽提取方法,低分子量的多肽可以得到很好的富集,且能有效地去除高分子蛋白质的污染.液相色谱串联 质谱MRM法检测血浆内提取的多肽,标准曲线的线性较好,相关系数为0.999.另外,采 用MRM法对胶内分离的蛋白质进行定量,标准曲线的线性相关系数为0.995.综上所述, 本研究构建了一种简单有效的血浆多肽提取方法,通过液质联用MRM法成功地实现了目标多肽和蛋白质定量测定.该定量方法可以推广应用于复杂样品中的多肽和蛋白质的定 量分析.  相似文献   

16.
人尿液中蛋白含量低,在进行质谱分析时易被高丰度蛋白掩盖。因此,发展高效和高选择性的富集方法,是实现尿蛋白标记物深度覆盖的必要前提。探究不同实验方法对尿液蛋白富集和尿蛋白质组的影响尤为重要。本研究采用超滤法、硝酸纤维素膜富集法和饱和硫酸铵沉淀法,等体积各处理5例健康志愿者和膀胱癌患者10 mL尿液样本,富集尿液蛋白,SDS-PAGE分离尿蛋白,比较不同方法纯化的效率;通过质谱分析,比较不同纯化方法的肽段鉴定效果,确定针对尿液蛋白质组蛋白的最佳富集方法。相对于超滤和硝酸纤维素膜富集法,饱和硫酸铵沉淀法成功地应用于健康人尿蛋白的富集和质谱检测,在保证回收蛋白质量的前提下,可减少高丰度白蛋白的干扰,富集更多低丰度蛋白,提高了质谱鉴定的灵敏度。综上所述,饱和硫酸铵提取尿蛋白的效果较好,该方法具有大规模处理尿液、提高蛋白质组学筛选临床诊断标记物研究的应用潜力。  相似文献   

17.
Serum protein profiling by mass spectrometry is a promising method for early detection of cancer. We have implemented a combined strategy based on matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and statistical data analysis for serum protein profiling and applied it in a well-described breast cancer case-control study. A rigorous sample collection protocol ensured high quality specimen and reduced bias from preanalytical factors. Preoperative serum samples obtained from 48 breast cancer patients and 28 controls were used to generate MALDI MS protein profiles. A total of nine mass spectrometric protein profiles were obtained for each serum sample. A total of 533 common peaks were defined and represented a 'reference protein profile'. Among these 533 common peaks, we identified 72 peaks exhibiting statistically significant intensity differences ( p < 0.01) between cases and controls. A diagnostic rule based on these 72 mass values was constructed and exhibited a cross-validated sensitivity and specificity of approximately 85% for the detection of breast cancer. With this method, it was possible to distinguish early stage cancers from controls without major loss of sensitivity and specificity. We conclude that optimized serum sample handling and mass spectrometry data acquisition strategies in combination with statistical analysis provide a viable platform for serum protein profiling in cancer diagnosis.  相似文献   

18.
The measurement of 5-methyltetrahydrofolic acid (5 MT) blood levels is one of several factors used to diagnose folate deficiency in humans. 5 can be selectively purified from either human plasma or human serum via solid-phase extraction procedures and specifically detected and quantified in the extracts with liquid chromatography/isotope-dilution electrospray-ionization mass spectrometry. Two different, yet complementary, solid-phase extraction-liquid chromatography/mass spectrometry methods have been developed and applied to the quantification of 5 MT from such extracts. One method utilizes the high-affinity folate-binding protein from cow's milk coupled with multiple-reaction-monitoring-mode tandem mass spectrometry while the other method utilizes reversed-phase C(18) extraction followed by selected-ion-monitoring-mode mass spectrometry. The accuracy of each method is assessed through a comparative determination of 5 MT levels in homogenous plasma and serum pools. Additionally, each method is compared and evaluated against the "total folate" results provided by routine radioassay and microbiological assay determinations. On the basis of the experimental data presented in this report, it is suggested that both methods have the capacity to serve as potential reference methods for the quantification of circulating 5MT in plasma or serum.  相似文献   

19.
生物质谱技术及其应用   总被引:8,自引:0,他引:8  
质谱是带电粒子按质荷比大小顺序排列的图谱,最初主要用来测定元素或同位素的原子量,随着科学的发展及高性能质谱仪器的出现,质谱被越来越多地应用生命科学研究的许多领域,以其质辅助激光解吸附飞行时间质谱和电喷雾质谱为代表的现代生物质谱技术,为蛋白质等生物大分子的研究提供了必要的技术手段。本文在简介近年来比较常用的几种生物质谱技术的基础上,概述了生物质谱技术在蛋白质,核酸研究及检测分析等几个方面的初步应用。  相似文献   

20.
氨基酸突变能够改变蛋白的结构和功能,影响生物体的生命过程.基于串联质谱的鸟枪法蛋白质组学是目前大规模研究蛋白质组学的主要方法,但是现有的质谱数据鉴定流程为了提高鉴定结果的灵敏度往往会有意压缩数据库中的氨基酸突变信息.因此,如何挖掘数据中的氨基酸突变信息成为当前质谱数据鉴定的一个重要部分.当前应用于氨基酸突变鉴定的串联质谱鉴定方法大致可以分为3大类:基于序列数据库搜索的方法、基于序列标签搜索的算法以及基于图谱库搜索的算法.本文首先详细介绍了这3种氨基酸突变鉴定算法,并分析了各种方法的特点和不足,然后介绍了氨基酸突变鉴定的研究现状和发展方向.随着基于串联质谱的蛋白质组学的不断发展,蛋白序列中的氨基酸突变信息将被更好地解析出来,从而得以深入探讨由氨基酸突变引起的蛋白结构和功能改变,为揭示氨基酸突变的生物学意义奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号