共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eight healthy men exercised to exhaustion on a cycle ergometer at a work load of 176 +/- 9 (SE) W corresponding to 67% (range 63-69%) of their maximal O2 uptake (exercise I). Exercise of the same work load was repeated after 75 min of recovery (exercise II). Exercise duration (range) was 65 (50-90) and 21 (14-30) min for exercise I and II, respectively. Femoral venous blood samples were obtained before and during exercise and analyzed for NH3 and lactate. Plasma NH3 was 12 +/- 2 and 19 +/- 6 mumol/l before exercise I and II, respectively and increased during exercise to exhaustion to peak values of 195 +/- 29 (exercise I) and 250 +/- 30 (exercise II) mumol/l, respectively. Plasma NH3 increased faster during exercise II compared with exercise I and at the end of exercise II was threefold higher than the value for the corresponding time of exercise I (P less than 0.001). Blood lactate increased during exercise I and after 20 min of exercise was 3.7 +/- 0.4 mmol/l and remained unchanged until exhaustion. During exercise II blood lactate increased less than during exercise I. It is concluded that long-term exercise to exhaustion results in large increases in plasma NH3 despite relatively low levels of blood lactate. It is suggested that the faster increase in plasma NH3 during exercise II (vs. exercise I) reflects an increased formation in the working muscle that may be caused by low glycogen levels and impairment of the ATP resynthesis. 相似文献
3.
R K Conlee C M Tipton 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1975,149(2):473-475
This study was undertaken because of uncertainties regarding the influence of hormones on myocardial glycogen metabolism of fed and fasted rats. The results indicate that adrenal hormones exert a stabilizing effect on myocardial glycogen levels in fed animals but are not necessary for synthesis to occur. Hypophysectomy eliminates the glycogen increase that occurs from fasting in normal animals while insulin deficiency leads to elevated glycogen stores in both fed and fasted conditions. These findings suggest that changes in myocardial glycogen metabolism are the results of a synergetic relationship between a variety of hormonal and nutritional factors. 相似文献
4.
5.
6.
G J Heigenhauser J R Sutton N L Jones 《Journal of applied physiology (Bethesda, Md. : 1985)》1983,54(2):470-474
Five male subjects performed two graded exercise studies, one during control conditions and the other after reduction of muscle glycogen content by repeated maximum exercise and a high fat-protein diet. Reduction in preexercise muscle glycogen from 59.1 to 17.1 mumol X g-1 (n = 3) was associated with a 14% reduction in maximum power output but no change in maximum O2 intake; at any given power output O2 intake, heart rate, and ventilation (VE) were significantly higher, CO2 output (VCO2) was similar, and the respiratory exchange ratio was lower during glycogen depletion compared with control. The higher VE during glycogen depletion was associated with a higher VE/VCO2 ratio, lower end-tidal and mixed venous CO2 partial pressures, and higher blood pH than in the control studies. Changes in exercise VE accompanying glycogen depletion were not explained by changes in CO2 flux to the lungs suggesting that other factors served to modulate VE in these experimental conditions. 相似文献
7.
8.
I Jacobs T T Romet D Kerrigan-Brown 《European journal of applied physiology and occupational physiology》1985,54(1):35-39
This study compared glycogen depletion in active skeletal muscle after light and moderate exercise in both cold and comfortable ambient conditions. Twelve male subjects (Ss) were divided into two groups equally matched for the submaximal exercise intensity corresponding to a blood lactate concentration of 4 mM (W4) during cycle exercise. On two separate days Ss rested for 30 min at ambient temperatures of either 9 degrees C or 21 degrees C, with the order of temperature exposure being counter-balanced among Ss. Following rest a tissue specimen was obtained from the m. vastus lateralis with the needle biopsy technique. Six Ss then exercised on a cycle ergometer for 30 min at 30% W4 (range = 50 - 65 W) while the remaining group exercised at 60% W4 (range = 85 - 120 W). Another biopsy was taken immediately after exercise and both samples were assayed for glycogen content. Identical procedures were repeated for the second environmental exposure. No significant glycogen depletion was observed in the Ss exercising at 30% W4 in 21 degrees C, but a 23% decrease (p = 0.04) was observed when the same exercise was performed at 9 degrees C. A 22% decrease (p = 0.002) in glycogen occurred in the 60% W4 group at 21 degrees C, which was not significantly different from that observed during the same exercise at 9 degrees C. The results suggest that muscle substrate utilization is increased during light exercise in a cold environment as compared to similar exercise at a comfortable temperature, probably due to shivering thermogenesis.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
10.
Glycogen utilization during exercise appears to be related to muscle respiratory capacity. Since the decline in hindlimb muscle respiratory capacity that occurs in rats during old age is eliminated when young and old rats undergo an identical exercise training protocol, liver and gastrocnemius glycogen concentrations were determined in identically trained young and old Fischer 344 rats at rest and immediately after a 30-min run requiring approximately 75% of maximal O2 consumption. These values were also compared with untrained age-matched control animals. The animals, which were 10 or 24 mo old after 6 mo of training, were fasted for 24 h before they were killed. Resting gastrocnemius glycogen did not differ among the groups. After 30 min of running, gastrocnemius glycogen was lower in the untrained than the trained groups and was not different between the trained groups. Resting liver glycogen was lower in the old trained group than the untrained groups but not statistically different from the young trained group. The postrun liver glycogen did not differ among the groups. Estimated gastrocnemius and liver glycogen utilization during exercise was decreased in both trained groups compared with untrained age-matched controls. These results indicate that the training-induced glycogen sparing during exercise of the same relative intensity was not diminished with age in identically trained young and old rats. 相似文献
11.
Influence of fasting on carbohydrate and fat metabolism during rest and exercise in men 总被引:2,自引:0,他引:2
Knapik J. J.; Meredith C. N.; Jones B. H.; Suek L.; Young V. R.; Evans W. J. 《Journal of applied physiology》1988,64(5):1923-1929
Metabolic effects of an overnight fast (postabsorptive state, PA) or a 3.5-day fast (fasted state, F) were compared in eight healthy young men at rest and during exercise to exhaustion at 45% maximum O2 uptake. Glucose rate of appearance (Ra) and disappearance (Rd) were calculated from plasma glucose enrichment during a primed, continuous infusion of [6,6-2H]glucose. Serum substrates and insulin levels were measured and glycogen content of the vastus lateralis was determined in biopsies taken before and after exercise. At rest, whole-body glucose flux (determined by the deuterated tracer) and carbohydrate oxidation (determined from respiratory exchange ratio) were lower in F than PA, but muscle glycogen levels were similar. During exercise, glucose flux, whole-body carbohydrate oxidation, and the rate of muscle glycogen utilization were significantly lower during the fast. In the PA state, glucose Ra and Rd increased together throughout exercise. However, in the F state Ra exceeded Rd during the 1st h of exercise, causing an increase in plasma glucose to levels similar to those of the PA state. The increase in glucose flux was markedly less throughout F exercise. Lower carbohydrate utilization in the F state was accompanied by higher circulating fatty acids and ketone bodies, lower plasma insulin levels, and the maintenance of physical performance reflected by similar time to exhaustion. 相似文献
12.
Goforth HW Laurent D Prusaczyk WK Schneider KE Petersen KF Shulman GI 《American journal of physiology. Endocrinology and metabolism》2003,285(6):E1304-E1311
Supercompensated muscle glycogen can be achieved by using several carbohydrate (CHO)-loading protocols. This study compared the effectiveness of two "modified" CHO-loading protocols. Additionally, we determined the effect of light cycle training on muscle glycogen. Subjects completed a depletion (D, n = 15) or nondepletion (ND, n = 10) CHO-loading protocol. After a 2-day adaptation period in a metabolic ward, the D group performed a 120-min cycle exercise at 65% peak oxygen uptake (VO2 peak) followed by 1-min sprints at 120% VO2 peak to exhaustion. The ND group performed only 20-min cycle exercise at 65% VO2 peak. For the next 6 days, both groups ate the same high-CHO diets and performed 20-min daily cycle exercise at 65% VO2 peak followed by a CHO beverage (105 g of CHO). Muscle glycogen concentrations of the vastus lateralis were measured daily with 13C magnetic resonance spectroscopy. On the morning of day 5, muscle glycogen concentrations had increased 1.45 (D) and 1.24 (ND) times baseline (P < 0.001) but did not differ significantly between groups. However, on day 7, muscle glycogen of the D group was significantly greater (p < 0.01) than that of the ND group (130 +/- 7 vs. 104 +/- 5 mmol/l). Daily cycle exercise decreased muscle glycogen by 10 +/- 2 (D) and 14 +/- 5 mmol/l (ND), but muscle glycogen was equal to or greater than preexercise values 24 h later. In conclusion, a CHO-loading protocol that begins with a glycogen-depleting exercise results in significantly greater muscle glycogen that persists longer than a CHO-loading protocol using only an exercise taper. Daily exercise at 65% VO2 peak for 20 min can be performed throughout the CHO-loading protocol without negatively affecting muscle glycogen supercompensation. 相似文献
13.
14.
H Koubi C Duchamp A Gélo?n A Fréminet Y Minaire 《Canadian journal of physiology and pharmacology》1991,69(6):841-845
Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4-7 degrees C). After a 2-day fast at 25 degrees C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated. 相似文献
15.
Leucine metabolism during fasting and exercise 总被引:2,自引:0,他引:2
Knapik J.; Meredith C.; Jones B.; Fielding R.; Young V.; Evans W. 《Journal of applied physiology》1991,70(1):43-47
Whole body leucine kinetics were examined in seven healthy young men while in a 14-h postabsorptive state (PAS) and after a 3.5-day fast (FS). Subjects received a primed constant intravenous infusion of L-[1-13C]leucine while resting for 3 h and then while exercising on a cycle ergometer at 45% maximal O2 uptake to exhaustion. Blood samples drawn during isotopic steady state were analyzed for 13C enrichment of leucine and alpha-ketoisocaproic acid, and expired gas samples were analyzed for 13CO2. Resting leucine flux was higher in the FS, and there was a slight increase in leucine oxidation. During exercise, leucine flux did not differ between PAS and FS but leucine oxidation rose markedly. In the FS, leucine oxidation was 25 +/- 7 (SD) mumol.kg-1.h-1 at rest and rose to 75 +/- 21 mumol.kg-1.h-1 during exercise; in the PAS, oxidation was 20 +/- 5 mumol.kg-1.h-1 at rest and 52 +/- 17 mumol.kg-1.h-1 during exercise. These data indicate that the high rate of leucine oxidation previously found during exercise was increased further by a 3.5-day fast. 相似文献
16.
Giant salamanders, Amphiuma means, measuring 240 to 280 mm from snout to vent, tolerate induced anoxia for six hours. Most of the cardiac glycogen (beta units) is depleted within the first hour of anoxia but a few scattered units remain after six hours. The suggestion that cardiac glycogen is a stand-by energy source which enhances the energy available to the heart during anoxic strain is reasonable. Beta units are stored in the heart as opposed to the larger alpha units in the liver. The smaller beta units are probably more easily metabolized than the larger alpha units due to their greater surface area per volume ratio and dispersal around the numerous cardiac mitochondria. 相似文献
17.
A Boninsegna M Pradella G Scutari P Vassanelli A Perissinotto 《Hormones et métabolisme》1985,17(8):399-401
The effect of a prolonged fast was studied in surgically portocaval shunted (PCS) rats. This shunt excludes the liver from the direct effect of pancreatic and enteric hormones, thus facilitating the study of the biochemical and metabolic effects of these hormones. In portocaval shunted rats, liver glycogen was lower than that of control rats, and remained unaffected during fasting. No remarkable difference was observed in blood glucose, plasma and liver free fatty acids and blood ketone bodies. Among blood nitrogen compounds, total protein, alanine and urea did not show any significant variation, while, in PCS rats, the initial low levels of creatinine resulted in an increase after fast. Skeletal muscle protein decreased only slightly in control rats, while their loss was remarkable in PCS rats. The possibility of a differential activation of gluconeogenesis and glycogenolysis in control and PCS rats is discussed. 相似文献
18.
The purpose of this experiment was to examine glycogen depletion in muscles of chronic diabetic rats during treadmill running of moderate intensity and glycogen repletion following the exercise bouts. Diabetes was induced with a single intravenous injection of streptozotocin (70 mg × kg?1). Glycogen concentrations in muscles from diabetic and normal animals were determined at rest, after running either 10 or 30 min at 23 m × min?1 (5% incline), or 2, 4, or 8 hr following 30 min of running at the same speed and incline. With the exception of soleus muscle after 30 min of running, there were no differences in muscle glycogen contents between normal and diabetic rats before exercise, immediately after exercise, or during the recovery period. All muscles showed a significant loss of glycogen during exercise, and most muscles had completely restored their glycogen by 2 hr following exercise. Blood lactate concentrations were also similar for normal and diabetic rats at rest and after exercise. It is concluded that the diabetic condition studied in this experiment did not significantly alter muscle glycogen metabolism during exercise of moderate intensity or during recovery from the activity. 相似文献
19.
Bracken M. E.; Bracken D. R.; Nelson A. G.; Conlee R. K. 《Journal of applied physiology》1988,64(2):884-887
To determine the effects of cocaine on exercise endurance, male rats were injected intraperitoneally with cocaine (20 mg/kg body wt) or saline and then run to exhaustion 20 min later at 22 m/min and 15% grade. Saline-injected animals ran 74.9 +/- 16.5 (SD) min, whereas cocaine-treated rats ran only 29 +/- 11.6 min. The drug had no effect on resting blood glucose or lactate levels, nor did it affect resting glycogen levels in liver or red and white vastus muscle. However, it did reduce resting soleus glycogen content by 30%. During exercise liver and soleus glycogen depletion occurred at the same rate in saline- and cocaine-treated animals. In contrast, the rate of glycogen depletion during exercise in red and white vastus was markedly increased in cocaine-treated rats with a corresponding elevation in blood lactate (12 vs. only 5 mM in saline group) at exhaustion. These data suggest that cocaine administration (20 mg/kg) before submaximal exercise dramatically alters glycogen metabolism during exercise, and this effect has a negative impact on exercise endurance. 相似文献
20.
Nakatani Akira; Han Dong-Ho; Hansen Polly A.; Nolte Lorraine A.; Host Helen H.; Hickner Robert C.; Holloszy John O. 《Journal of applied physiology》1997,82(2):711-715
Nakatani, Akira, Dong-Ho Han, Polly A. Hansen, Lorraine A. Nolte, Helen H. Host, Robert C. Hickner, and John O. Holloszy. Effect of endurance exercise training on muscle glycogensupercompensation in rats. J. Appl.Physiol. 82(2): 711-715, 1997.The purpose of this study was to test the hypothesis that the rate and extent ofglycogen supercompensation in skeletal muscle are increased byendurance exercise training. Rats were trained by using a 5-wk-long swimming program in which the duration of swimming was gradually increased to 6 h/day over 3 wk and then maintained at 6 h/day for anadditional 2 wk. Glycogen repletion was measured in trained anduntrained rats after a glycogen-depleting bout of exercise. The ratswere given a rodent chow diet plus 5% sucrose in their drinking waterad libitum during the recovery period. There were remarkabledifferences in both the rates of glycogen accumulation and the glycogenconcentrations attained in the two groups. The concentration ofglycogen in epitrochlearis muscle averaged 13.1 ± 0.9 mg/g wet wtin the untrained group and 31.7 ± 2.7 mg/g in the trained group(P < 0.001) 24 h after the exercise.This difference could not be explained by a training effect on glycogensynthase. The training induced ~50% increases in muscle GLUT-4glucose transporter protein and in hexokinase activity inepitrochlearis muscles. We conclude that endurance exercise trainingresults in increases in both the rate and magnitude of muscle glycogensupercompensation in rats. 相似文献