首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reinitiation of growth by rat C6 glioma cultures following dissociation, dilution, and replating arises from the disruption of cooperative cell interactions rather than from the effects of the dissociating agent upon the cell surface or an anchorage dependent event. The cell interaction mechanism responsible for this effect does not involve the extracellular matrix or a conditioned medium factor, and is therefore probably contact in nature. Three distinct components of C6 growth regulation can now be recognized: (1) an endogenous growth program which specifies the time base of growth events and causes growth inhibition; (2) a density dependent mechanism that regulates the amplitude of the growth rate; and (3) a second density dependent mechanism which ‘locks’ cells into a state of growth inhibition, thereby preventing growth reinitiation. Both of the density dependent mechanisms appear to involve contact mediation.  相似文献   

2.
M Ernst  G Adam 《Cytobiologie》1979,18(3):450-459
Intracellular contents of potassium and of sodium are determined for 3T3 and SV 40-3T3 cells in dependence of growth density. In parallel, total cell volume and volume of intracellular water is determined for these cells suspended in physiological buffer. Intracellular potassium concentration thus evaluated for suspended 3T3 cells exhibits a sharp decrease at cellular growth densities which lead to density dependent inhibition of cell proliferation. In the case of SV 40-3T3 cells, this drop of potassium concentration with increasing cellular growth density is not observed, which correlates well with the absence of cell density dependent inhibition of cell growth in the transformed cell line. These results support the notion that processes of stimulation of quiescent 3T3 cells or of cell density dependent inhibition of their proliferation are mediated by processes including changes of potassium transport characteristics leading to increase or decrease respectively of their intracellular potassium concentration. Furthermore, these and other results suggest, that a difference between normal and transformed cells most relevant to their different proliferation behaviour might reside in different transport characteristics for potassium of the plasma membranes of these cells.  相似文献   

3.
Summary Density-dependent regulation of cell growth in tissue culture is a well-known phenomenon but the mechanism of regulation remains obscure. Here we explore the effects of cell density and metabolite flux on the collective dynamics of a cell population. The intracellular dynamics are modelled by positive feedback kinetic mechanisms of the kind known to apply to yeast cells. Several experimental observations related to glycolytic oscillations are predicted and it is suggested that the general conclusions may be applicable in a broader context.  相似文献   

4.
5.
Heparin and heparan sulfate proteoglycans (HSPG) bind many soluble growth factors and this binding is now recognized as an important mechanism for modulation of cell activity. Fibroblast growth factor-2 (FGF-2) is one of the best characterized of the heparin-binding growth factors and it has been shown experimentally that heparin regulation of FGF-2 activity is dependent on the level of cell HSPG and the concentration of heparin. In this paper, we explore, using mathematical modeling, proposed mechanisms for heparin regulation and determine how they impact FGF receptor binding. We demonstrate that the experimentally observed receptor binding phenomena can be reproduced if cells (1) express heparin-binding cell surface molecules and if either (2) these heparin binding sites are FGFR and bind heparin and FGF-2-heparin complexes or (3) are surface molecules able to bind FGF-2 and couple with FGF-2 receptors to form high-affinity FGF-2-bound surface complexes. The ability of heparin to directly interact with the FGFR and bind FGF-2 in the absence of this coupling function was not sufficient to explain heparin activity. These findings have implications with regard to regulation of heparin-binding growth factors and could help guide the development of highly specific growth regulatory molecules through specific regulation by heparin and HSPG.  相似文献   

6.
The agglutinability of rat C6 glioma cells by concanavalin A (Con A) depends upon cell density. From sparse density to near confluency agglutinability increases as cell density rises. Both the half-maximal concentration and the maximum amplitude of agglutination by Con A are functions of cell density, but are separate cell parameters differing in the extent to which they are affected by density and the point at which they become insensitive to further density increases. Both trypsin and EDTA reduce cell agglutinability. The similarity in recovery kinetics between low density cells and cells dissociated with EDTA or trypsin suggests that low density cells may lose the same surface agglutination component(s) removed by trypsin and EDTA. Density-dependent regulation of Con A agglutinability is anchorage dependent; cells grown in suspension display no such phenomenon. The cooperative cell regulation of agglutinability is mediated by the extracellular matrix, or micro-exudate. The matrix contains two activities: low density cultures produce a matrix inhibitor of Con A agglutinability, while high density cultures produce a matrix promotor.  相似文献   

7.
Experiments have shown that pollen tubes grow in an oscillatory mode, the mechanism of which is poorly understood. We propose a theoretical growth model of pollen tubes exhibiting such oscillatory behaviour. The pollen tube and the surrounding medium are represented by two immiscible fluids separated by an interface. The physical variables are pressure, surface tension, density and viscosity, which depend on relevant biological quantities, namely calcium concentration and thickness of the cell wall. The essential features generally believed to control oscillating growth are included in the model, namely a turgor pressure, a viscous cell wall which yields under pressure, stretch-activated calcium channels which transport calcium ions into the cytoplasm and an exocytosis rate dependent on the cytosolic calcium concentration in the apex of the cell. We find that a calcium dependent vesicle recycling mechanism is necessary to obtain an oscillating growth rate in our model. We study the variation in the frequency of the growth rate by changing the extracellular calcium concentration and the density of ion channels in the membrane. We compare the predictions of our model with experimental data on the frequency of oscillation versus growth speed, calcium concentration and density of calcium channels.  相似文献   

8.
Acidic and basic fibroblast growth factors (aFGF and bFGF) have been isolated and purified from rod outer segments (ROS). aFGF is tightly bound to ROS membranes and can be specifically released by ATP. We show that this mechanism is dependent on the phosphorylation of aFGF itself. Phorbol 12-myristate 13-acetate (PMA) enhances this phenomenon independently of rhodopsin phosphorylation. This demonstrates that aFGF release from ROS membranes is dependent on its phosphorylation by endogenous kinase C. In addition specific binding sites for exogenous FGFs have been identified on ROS and disc membranes. A single high affinity site with a Kd of 40 pM was present in intact ROS while an additional low affinity site with a Kd of 300-600 pM was present in leaky ROS or in disc membranes. Light or ATP modified neither these Kd nor the apparent number of sites. The presence of specific receptors for FGFs and the kinase C dependent release of endogenous membrane bound aFGF suggest an autocrine mechanism which may be involved in photoreceptor cell biology.  相似文献   

9.
In order to further investigate the connection between transport and growth control, 3T3 cells, SV40 transformed 3T3 cells (SV101), and three revertant cell lines derived from SV101 which have regained certain manifestations of growth control were used. Transport rates of 2-amino-isobutyric acid and 3-O-methyl-D-glucose were measured in sparse, confluent, serum-starved, and serum-stimulated cultures. As shown before, cessation of 3T3 cell growth in G0 under conditions of confluence or serum deprivation was associated with reduced rates of transport for both compounds, whereas the density and serum dependence of growth and transport was largely eliminated in SV101. The density revertant F1SV101, which has regained density regulation of growth similar to 3T3 cells, has also regained density regulation of transport. Neither growth nor transport were serum dependent. The serum revertants AgammaSV7 and LsSV6 have regained both density and serum regulation of growth, but not according to the original mechanism of 3T3 cells of entry into a Go state. Transport was high under conditions of confluence or serum deprivation. Thus for these cells rates of transport were not reduced simply as a consequences of slower cell growth nor were low transport rates responsible for growth arrest. The data are consistent with the possibility that growth arrest specifically in the G0 state could shut off a number of cellular activities, including transport.  相似文献   

10.
Effects of inoculum cell density on mammalian cell growth in culture have been observed in a variety of experimental systems. Although these effects have been attributed generally to medium conditioning by the cells, there has previously been no quantitative theory proposed for this phenomenon based on developments in molecular and cell biology. In this article, we offer such a theory founded on the regulatory action of autocrine growth factors. A particularly relevant example of these is platelet- derived growth factor (PDGF), which is produced by fibroblastic cells in response to stimulation by transforming growth factor beta (TGFbeta), a common serum constituent, and provides a mitogenic signal for the same cells. A simple mathematical model for the production, diffusive transport, and binding of autocrine growth factors to cell surface receptors, coupled to a model for the dependence of cell proliferation on growth factor receptor binding allows prediction of initial cell population growth rate as a function of inoculum cell density. We focus on situations involving anchorage-dependent cell growth, in which the cells are attached to a surface. A number of clear results are obtained, most notably the following: 1) for cells cultured on spherical microcarrier bead surfaces, the inoculum cell density needed to produce a given growth rate is linearly proportional to the bead radius; and 2) all other factors being equal, the inoculum cell density on a unit surface area basis needed to produce a given growth rate is greater for spherical microcarrier surfaces than for flat culture dish surfaces. These two results are consistent with the experimental observations of Hu and coworkers(1,2) for fibroblast growth in minimal medium plus serum. The model also allows elucidation of the influence of other system parameters, both biological and physical, on initial cell proliferation rate and the inoculum cell density dependence.  相似文献   

11.
The control of body size in insects   总被引:1,自引:0,他引:1  
Control mechanisms that regulate body size and tissue size have been sought at both the cellular and organismal level. Cell-level studies have revealed much about the control of cell growth and cell division, and how these processes are regulated by nutrition. Insulin signaling is the key mediator between nutrition and the growth of internal organs, such as imaginal disks, and is required for the normal proportional growth of the body and its various parts. The insulin-related peptides of insects do not appear to control growth by themselves, but act in conjunction with other hormones and signaling molecules, such as ecdysone and IDGFs. Size regulation cannot be understood solely on the basis of the mechanisms that control cell size and cell number. Size regulation requires mechanisms that gather information on a scale appropriate to the tissue or organ being regulated. A new model mechanism, using autocrine signaling, is outlined by which tissue and organ size regulation can be achieved. Body size regulation likewise requires a mechanism that integrates information at an appropriate scale. In insects, this mechanism operates by controlling the secretion of ecdysone, which is the signal that terminates the growth phase of development. The mechanisms for size assessment and the pathways by which they trigger ecdysone secretion are diverse and can be complex. The ways in which these higher-level regulatory mechanisms interact with cell- and molecular- level mechanisms are beginning to be elucidated.  相似文献   

12.
We report clear evidence that the interaction of the CD38 molecule with the specific mAb A10 on normal human cells and lines modulates the expression of surface activation markers relevant to T, NK, and plasma cell biology and functions. Moreover A10 mAb binding is followed by proliferation effects on all the target cells analyzed, and the phenomenon is accessory cell and IL-2 dependent. The effects of A10 mAb synergizing both CD2 and CD3 activation pathways indicate that CD38 signal transduction mechanism(s) are apparently different from the aforementioned. Nevertheless the decreased A10-driven proliferation after CD3-Ti modulation suggests a possible functional interdependence between these activation pathways. Taken together, the results indicate that the CD38 molecule might play a physiologic role in T, NK, and plasma cell regulation.  相似文献   

13.
Agrobacteria have Ti plasmid DNA delivering systems for the transfer to recipient cells by the conjugation mechanism. This transfer is absolutely dependent on induction tra genes. It is not clear which tra-dependent surface (extracellular) proteins (structures) are involved in the transport mechanism and whether these proteins also play a role in the contact formation. SDS-PAGE electrophoresis of proteins released from the cell showed disappearance of 63 and 67 kD proteins in R1(delta traR) strain, which were found in the growth medium and triton extract from the outer membrane of Ti plasmid-harboring A. tumefaciens R10 strains. The traR defective mutant did not express these proteins and had a higher hemagglutination and flocculation capacity than the wild strain. On the other hand, the wild strain showed D-galactose and N-acetyl-galactosamine specific hemagglutination which was not shown by traR mutant. Motility and chemotactic behavior of traR mutant in semisolid medium were defective. As a rule, one (or rarely two) thread-like connections in vir(-) and tra(+) conditions were observed on the agrobacterial cell surface. SDS pretreatment of agrobacterial cells had a significant effect on the expression of tra-dependent surface structures.  相似文献   

14.
In order to go further into the pathogenesis of human pituitary adenomas, we studied receptors for neurohormones (thyroliberin, TRH; dopamine, DA; somatostatin, SRIH), for estradiol and epidermal growth factor (EGF) thought to influence hormone secretion and/or cell growth. The following results were obtained: (1) the receptors listed above, with the exception of EGF receptors in the adenomas, are present in normal pituitary tissue and in prolactin (PRL)- and growth hormone (GH)-secreting adenomas; (2) they are functional and their affinities are not different in normal or tumoral tissues; (3) their density is variable and depends on the type of secreting adenoma (GH or PRL), the size of the tumor and the plasma level of the hormone which is secreted, and (4) in nonsecreting adenomas, only TRH receptors are found with characteristics identical to those observed in secreting adenomas. We also showed that TRH is contained in normal and tumoral pituitary tissues. TRH and SRIH are released in vitro from adenomatous cells in large amounts, suggesting their possible synthesis by the pituitary. In both cases a local regulation is observed. TRH release is stimulated in the presence of DA while SRIH is inhibited in the presence of TRH. This neuropeptide release may be implicated in the pituitary hormone regulation through a paracrine or an autocrine mechanism. Thus, the neurohormone receptors found in pituitary adenomas should be dependent on a more complex regulation than it has been envisaged till now.  相似文献   

15.
Cellular quiescence is a reversible cell growth arrest that is often assumed to require a persistence of non-permissive external growth conditions for its maintenance. In this work, we showed that androgen could induce a quiescent state that is self-sustained in a cell-autonomous manner through a “hit and run” mechanism in androgen receptor-expressing prostate cancer cells. This phenomenon required the set-up of a sustained redox imbalance and TGFβ/BMP signaling that were dependent on culturing cells at low density. At medium cell density, androgens failed to induce such a self-sustained quiescent state, which correlated with a lesser induction of cell redox imbalance and oxidative stress markers like CDKN1A. These effects of androgens could be mimicked by transient overexpression of CDKN1A that triggered its own expression and a sustained SMAD phosphorylation in cells cultured at low cell density. Overall, our data suggest that self-sustained but fully reversible quiescent states might constitute a general response of dispersed cancer cells to stress conditions.  相似文献   

16.
E-cadherin has been linked to the suppression of tumor growth and the inhibition of cell proliferation in culture. We observed that progressively decreasing the seeding density of normal rat kidney-52E (NRK-52E) or MCF-10A epithelial cells from confluence, indeed, released cells from growth arrest. Unexpectedly, a further decrease in seeding density so that cells were isolated from neighboring cells decreased proliferation. Experiments using microengineered substrates showed that E-cadherin engagement stimulated the peak in proliferation at intermediate seeding densities, and that the proliferation arrest at high densities did not involve E-cadherin, but rather resulted from a crowding-dependent decrease in cell spreading against the underlying substrate. Rac1 activity, which was induced by E-cadherin engagement specifically at intermediate seeding densities, was required for the cadherin-stimulated proliferation, and the control of Rac1 activation by E-cadherin was mediated by p120-catenin. Together, these findings demonstrate a stimulatory role for E-cadherin in proliferative regulation, and identify a simple mechanism by which cell-cell contact may trigger or inhibit epithelial cell proliferation in different settings.  相似文献   

17.
The cell density dependent regulation of phenylalanine hydroxylase activity in Reuber hepatoma (H4) cells growing in monolayer culture has been examined in detail. We found that 48 h or more after subculture phenylalanine hydroxylase activity in the cells is an exponential function of cell density (cells/cm2). No discontinuity in the relationship is seen with the formation of a confluent monolayer.A rapid loss or a rapid gain in enzyme activity in the cells is observed after diluting or concentrating the cell cultures. The two processes appear qualitatively different. The loss in activity is a first order process which starts at the time of subculture with the rate of loss dependent on the density of subculture. The gain in activity begins 6–8 h after subculture to a higher density; it can be blocked by cycloheximide and has a maximum rate of increase that is about 10% of the maximum rate of loss of activity.Using immunochemical procedures, we found the same amount of phenylalanine hydroxylase associated antigen in Reuber cells from low density as from high density cultures, over a range of phenylalanine hydroxylase specific activities from 0.2 to 4.2. After concentrating cells to a higher density, no increase in enzyme antigen was observed, despite a several-fold increase in enzyme activity and a requirement for protein synthesis during the process. These observations imply the presence of an active and inactive phenylalanine hydroxylase with the relative amounts of each determined by the cell density. The effects of db-cAMP are discussed. Evidence is presented here that the hydrocortisone stimulation of phenylalanine hydroxylase activity works through a different mechanism than the cell density dependent process.  相似文献   

18.
At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based on experimental observations and life-history modeling for the earthworms Lumbricus terrestris and Eisenia fetida . Both species differ in their life-histories, L. terrestris being a relatively long-lived species with slow reproduction and occurring at low densities compared to E. fetida which has a more opportunistic strategy with a high reproductive output. E. fetida is able to colonise new habitats rapidly and may occur at relatively high population densities. Density dependency of population growth rate was estimated by incorporating density dependent effects on reproduction and growth using a modified Euler equation. The results point out that E. fetida was not as strongly impacted by density as compared to L. terrestris . Population growth rate in E. fetida was hardly affected at low and moderate density, being reduced only at high level, this compares to L. terrestris where even relatively small density effects resulted in a strong negative effect on population growth rate. Our findings indicate that density-dependent regulation in earthworms can be quantified using life-history analysis. The outcomes are in agreement with empirical field observations for populations (i.e. L. terrestris occurs ar low density, E. fetida at high density). Consideration of the potential importance of Nicholsonian density dependence for field populations of these two species in light of their known biology however produces counterintuitive conclusions. In E. fetida , although density tolerant, rapid population growth may mean this species may be subject to density dependeny regulation. In L. terrestris , although density sensitive, complex behavioural ecology (surface activity, territoriality) may limit of feedback influence on population size.  相似文献   

19.
B. E. S. Gunning 《Planta》1978,143(2):181-190
Plasmodesmata were counted in the longitudinal and transverse walls in developmental sequences of merophytes in roots of Azolla pinnata R.Br. The differences between certain categories of longitudinal wall were traced to factors that govern the surface area of the cell plates, the density of plasmodesmata (number per unit area of cell plate), and the amount by which each type of plate expands. No evidence for secondary augmentation of plasmodesmatal numbers after the cell-plate stage of development was found, but plasmodesmata are lost from the walls of sieve and xylem elements during their differentiation. Losses caused by cell separation occur in other tissues. The relatively high density of plasmodesmata in transverse walls is based not so much on a high density in the cell plates as on the relatively low expansion that these walls undergo. There appears to be a compensatory mechanism that relates initial plasmodesmatal density to the future expansion of the cell plate. The root shows determinate growth, the apical cell dividing about 55 times. Beginning at about the 35th division there is a progressive failure to maintain the plasmodesmatal frequencies that were developed in earlier cell divisions in the apical cell. The divisions that occur within the later-produced merophytes also show progressive diminution of plasmodesmatal numbers. The result is that the apex of the root, and particularly the apical cell, becomes more and more isolated symplastically, a phenomenon which could account for its limited lifespan and the determinate growth pattern of the root.  相似文献   

20.
Catecholamine modulation of embryonic palate mesenchymal cell DNA synthesis   总被引:1,自引:0,他引:1  
Development of the mammalian embryonic palate depends on the precise temporal and spatial regulation of growth. The factors and mechanisms underlying differential growth patterns in the palate remain elusive. Utilizing quiescent populations of murine embryonic palate mesenchymal (MEPM) cells in vitro, we have begun to investigate hormonal regulation of palatal cell proliferation. MEPM cells in culture were rendered quiescent by 48 hr serum deprivation and were subsequently released from growth arrest by readdition of medium containing 10% (v/v) serum. The progression of cells into S-phase of the cell cycle was monitored by autoradiographic analysis of tritiated thymidine incorporation. Palate mesenchymal cell entry into S-phase was preceded by a 6- to 8-hr prereplicative lag period, after which time DNA synthesis increased and cells reached a maximum labeling index by 22 hr. Addition of 10 microM isoproterenol to cell cultures at the time of release from growth arrest lengthened the prereplicative lag period and delayed cellular entry into S-phase by an additional 2 to 4 hr. The rate of cellular progression through S-phase remained unaltered. The inhibitory effect of isoproterenol on the initiation of MEPM cell DNA synthesis was abolished by pretreatment of cells with propranolol at a concentration (100 microM) that prevented isoproterenol-induced elevations of cAMP. Addition of PGE2 to cell cultures, at a concentration that markedly stimulates cAMP formation, mimicked the inhibitory effect of isoproterenol on cellular progression into S-phase. These findings demonstrate the ability of the beta-adrenergic catecholamine isoproterenol to modulate MEPM cell proliferation in vitro via a receptor-mediated mechanism and raise the possibility that the delayed initiation of DNA synthesis in these cells is a cAMP-dependent phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号