首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab proteins are geranylgeranylated on their carboxyl terminal cysteine motifs by geranylgeranyltransferase II (GGTase). Rab escort protein (REP) is required to present Rab proteins to GGTase. REP may remain bound to newly isoprenylated Rab proteins and present them to their target membrane. Other studies have shown that Rab proteins cycle between the membrane and cytosolic compartments and that cytosolic Rab proteins are complexed with rab-GDI. In the present study, we examined the expression and localization of REP isoforms in parotid acinar cells. Although both REP isoforms, REP-1 and REP-2, were detected in parotid cytosol, REP-2 was the predominant isoform. Subcellular fractionation revealed that approximately 42% of cellular REP-2 is membrane-associated. REP-2 was partially removed from parotid membranes with 1 M NaCl or Na(2)CO(3), indicating that REP-2 is a peripheral membrane protein. Membrane-associated REP-2 did not colocalize with Rab3D on secretory granule membranes. However, density gradient centrifugation revealed that membrane-associated REP-2 and Rab3D colocalize on low- and high-density membrane fractions in parotid acinar cells. Isoproterenol, an agent which induces amylase release from parotid glands, caused a shift in both REP-2 and Rab3D to less dense membrane fractions. When acinar cell cytosol was fractionated by gel filtration chromatography, Rab3D eluted exclusively with REP, not rab-GDI. In contrast, Rab1B and Rab5 eluted with both REP and Rab-GDI. Colocalization of Rab3D and REP-2 on acinar cell membranes suggests that REP-2 plays a role in delivering Rab3D to parotid membranes and may regulate guanine nucleotide binding to membrane-associated Rab3D. In addition, unlike other Rab proteins, cytosolic Rab3D appears to associate exclusively with REP, not rab-GDI in parotid acinar cells.  相似文献   

2.
Rab3 proteins are small GTP-binding proteins known to play a role in regulated exocytosis processes. This study examines the expression of Rab3 mRNA and protein in bovine, rat and human parathyroid glands. mRNAs of several Rab3 isoforms were detected in bovine (Rab3A, Rab3B and Rab3C) and rat (Rab3A, Rab3B and Rab3D) parathyroid glands by RT-PCR and sequencing. Rab3A protein was detected in the cytosolic extract from bovine parathyroid gland by Western blotting using a monoclonal antibody for Rab3A. Rab3A protein was localized to parathyroid hormone-containing chief cells by immunohistochemical staining. Subcellular localization of Rab3A protein by immunogold electron microscopy revealed that the majority of Rab3A protein was not associated with dense-core vesicles, but localized in the cytosol of the chief cells. Altogether, our results demonstrate that Rab3 isoforms are expressed in parathyroid chief cells, suggesting that they may play a role in regulated exocytosis in these cells.  相似文献   

3.
4.
Members of the Rab3 subfamily have been linked to the regulation of exocytosis in secretory cells. We have recently shown by Northern blot analysis that pancreatic acinar-like AR42J cells express all four Rab3 isoforms (Rab3A-D). In the present study, we examined the subcellular distribution of endogenously expressed Rab3 proteins and their relation to the amylase-containing secretory compartment in dexamethasone-differentiated AR42J cells. Rab3A and Rab3C were enriched in the cytosol, Rab3B and Rab3D in the membrane fraction. Accordingly, confocal immunocytochemistry revealed that Rab3B and Rab3D were located in a compartment close to the plasma membrane, whereas anti-Rab3A and Rab3C mainly stained the cytosol. Sucrose density gradient centrifugation showed overlapping, but distinct localization of each Rab3 isoform. The order of banding from lighter to more dense fractions was Rab3C < Rab3A < Rab3B < Rab3D. All Rab3 proteins at least partially colocalized with amylase immunoreactivity. Transient overexpression of Rab3 proteins showed that Rab3A inhibited cholecystokinin (CCK)-induced amylase secretion, whereas overexpression of other Rab3 isoforms had no significant effect. In conclusion, our data indicate that the different Rab3 proteins show distinct subcellular distribution, suggesting different impact on exocrine secretory response in dexamethasone-differentiated AR42J cells.  相似文献   

5.
Rab6 GTPase regulates intracellular transport at the level of the Golgi complex. Using the yeast two-hybrid screen, we have isolated two clones that specifically interact with the three isoforms of Rab6 present in mammalian cells (Rab6A, A' and B). The cDNAs encode two proteins of 976 and 1120 amino acids (calculated molecular mass of 112 and 128 kDa, respectively) that we named Rab6IP2A and Rab6IP2B (for Rab6 Interacting Protein 2). The two proteins likely correspond to spliced variants of the same gene. Rab6IP2s have no significant homology with other known proteins, including Rab effectors or partners. They are ubiquitously expressed, mostly cytosolic and found in high molecular mass complexes in brain cytosol. We show that Rab6IP2s can be recruited on Golgi membranes in a Rab6:GTP-dependent manner. The overexpression of any form of Rab6IP2 has no detectable effect on the secretory pathway. In contrast, the retrograde transport of the Shiga toxin B subunit between the plasma membrane and the Golgi complex is partly inhibited in cells overexpressing the Rab6-binding domain of Rab6IP2. Our data suggest that Rab6IP2s is involved in the pathway regulated by Rab6A'.  相似文献   

6.
The targeting of various Rab proteins to different subcellular compartments appears to be determined by variable amino acid sequences located upstream from geranylgeranylated cysteine residues in the C-terminal tail. All nascent Rab proteins are prenylated by geranylgeranyltransferase II, which recognizes the Rab substrate only when it is bound to Rab escort protein (REP). After prenylation, REP remains associated with the modified Rab until it is delivered to the appropriate subcellular membrane. It remains unclear whether docking of the Rab with the correct membrane is solely a function of features contained within the prenylated Rab itself (with REP serving as a "passive" carrier) or whether REP actively participates in the targeting process. To address this issue, we took advantage of a mutation in the alpha2 helix of Rab1B (i.e. Y78D) that abolishes REP and GDI interaction without disrupting nucleotide binding or hydrolysis. These studies demonstrate that replacing the C-terminal GGCC residues of Rab1B(Y78D) with a CLLL motif permits this protein to be prenylated by geranylgeranyltransferase I but not II both in cell-free enzyme assays and in transfected cells. Subcellular fractionation and immunofluorescence studies reveal that the prenylated Rab1B(Y78D)CLLL, which remains deficient in REP and GDI association is, nonetheless, delivered to the Golgi and endoplasmic reticulum (ER) membranes. When the dominant-negative S22N mutation was inserted into Rab1B-CLLL, the resulting monoprenylated construct suppressed ER --> Golgi protein transport. However, when the Y78D mutation was added to the latter construct, its inhibitory effect on protein trafficking was lost despite the fact that it was localized to the ER/Golgi membrane. Therefore, protein interactions mediated by the alpha2 helical domain of Rab1B(S22N) appear to be essential for its functional interaction with components of the ER --> Golgi transport machinery.  相似文献   

7.
The Rab/Ypt small G proteins are essential for intracellular vesicle trafficking in mammals and yeast. The vesicle-docking process requires that Ypt proteins are located in the vesicle membrane. C-terminal geranylgeranyl anchors mediate the membrane attachment of these proteins. The Rab escort protein (REP) is essential for the recognition of Rab/Ypt small G proteins by geranylgeranyltransferase II (GGTase II) and for their delivery to acceptor membranes. What effect an alteration in the levels of prenylated Rab/Ypt proteins has on vesicle transport or other cellular processes is so far unknown. Here, we report the characterization of a yeast REP mutant, mrs6-2, in which reduced prenylation of Ypt proteins occurs even at the permissive temperature. A shift to the restrictive temperature does not alter exponential growth during the first 3 h. The amount of Sec4p, but not Ypt1p, bound to vesicle membranes is reduced 2.5 h after the shift compared with wild-type or mrs6-2 cells incubated at 25 degrees C. In addition, vesicles fail to be polarized towards the bud and small budded binucleate cells accumulate at this time point. Growth in 1 M sorbitol or overexpression of MLC1, encoding a myosin light chain able to bind the unconventional type V myosin Myo2, or of genes involved in cell wall maintenance, such as SLG1, GFA1 and LRE1, suppresses mrs6-2 thermosensitivity. Our data suggest that, at least at high temperature, a critical minimal level of Ypt protein prenylation is required for maintaining vesicle polarization.  相似文献   

8.
Nitrogen-containing bisphosphonate drugs inhibit bone resorption by inhibiting FPP synthase and thereby preventing the synthesis of isoprenoid lipids required for protein prenylation in bone-resorbing osteoclasts. NE10790 is a phosphonocarboxylate analogue of the potent bisphosphonate risedronate and is a weak anti-resorptive agent. Although NE10790 was a poor inhibitor of FPP synthase, it did inhibit prenylation in J774 macrophages and osteoclasts, but only of proteins of molecular mass approximately 22-26 kDa, the prenylation of which was not affected by peptidomimetic inhibitors of either farnesyl transferase (FTI-277) or geranylgeranyl transferase I (GGTI-298). These 22-26-kDa proteins were shown to be geranylgeranylated by labelling J774 cells with [(3)H]geranylgeraniol. Furthermore, NE10790 inhibited incorporation of [(14)C]mevalonic acid into Rab6, but not into H-Ras or Rap1, proteins that are modified by FTase and GGTase I, respectively. These data demonstrate that NE10790 selectively prevents Rab prenylation in intact cells. In accord, NE10790 inhibited the activity of recombinant Rab GGTase in vitro, but did not affect the activity of recombinant FTase or GGTase I. NE10790 therefore appears to be the first specific inhibitor of Rab GGTase to be identified. In contrast to risedronate, NE10790 inhibited bone resorption in vitro without markedly affecting osteoclast number or the F-actin "ring" structure in polarized osteoclasts. However, NE10790 did alter osteoclast morphology, causing the formation of large intracellular vacuoles and protrusion of the basolateral membrane into large, "domed" structures that lacked microvilli. The anti-resorptive activity of NE10790 is thus likely due to disruption of Rab-dependent intracellular membrane trafficking in osteoclasts.  相似文献   

9.
Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP-Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab-binding properties, GDI cannot assist in Rab prenylation and REP cannot retrieve Rab proteins from the membranes. We have now isolated REP mutant proteins that are able to partially function as both REP and GDI. These results provide molecular insight into the functional and evolutionary organization of the REP/GDI superfamily.  相似文献   

10.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.  相似文献   

11.
Post-translational geranylgeranylation of Rab GT-Pases is essential for their membrane association and function as regulators of intracellular vesicular transport. The reaction is catalyzed by Rab geranylgeranyltransferase (RGGT) and is assisted by the Rab escort proteins (REP), which form stable complexes with newly synthesized GDP-bound Rabs. Two genetic diseases involve the Rab geranylgeranylation machinery: choroideremia, an X-linked retinal degeneration resulting from loss-of-function mutations in REP1, and gunmetal, a mouse model of Hermansky-Pudlak syndrome resulting from mutations in the alpha-subunit of RGGT. A small subset of Rab proteins is selectively under-prenylated in both diseases, most notably Rab27a. Here we analyze why Rab27a is selectively affected in diseases of Rab geranylgeranylation. Semi-quantitative immunoblotting suggests that mass action, i.e. the amount of Rab27a relative to other Rabs, is unlikely to be a factor as the expression level of Rab27a is similar to other Rabs not affected in these diseases. In vitro binding assays and fluorescence resonance energy transfer detected by fluorescence lifetime imaging microscopy in intact cells demonstrate that Rab27a binds equally well to both REP1 and REP2, suggesting differential affinity of Rab27a for REP isoforms is not an important factor. However, steady-state kinetic analysis of the geranylgeranylation reaction indicates that REP2-Rab27a has lower affinity for RGGT compared with REP1-Rab27a. Furthermore, we show that Rab27a has relatively low GTPase activity, presumably decreasing the affinity of the REP interaction in vivo. We suggest that the restricted phenotypes observed in these diseases result from multiple contributing factors.  相似文献   

12.
Two distinct isoforms of a Type II calcium/calmodulin-dependent protein kinase were separated from high-speed supernates (cytosol) of rat neonatal [postnatal day 10 (P10)] and adult [postnatal day 40 (P40)] cerebellum using cation-exchange chromatography. The isoenzymes contained variable amounts of three subunits of apparent Mr's of 50 kDa (alpha), 58 kDa (beta'), and 60 kDa (beta). The specific activity of calmodulin-dependent kinase (CaM kinase II) in crude homogenates increased sixfold between P10 and P40 using exogenous MAP 2 as substrate. Cytosol from cerebellum at P40 contained a predominant isoform (approximately 40% of total cytosolic activity) with a 1:5 molar ratio of alpha:beta',beta subunits that eluted with 150 mM NaCl (designated 150) and a less abundant isoform (approximately 20% of total cytosolic activity) containing a 1:8 molar ratio of alpha:beta',beta subunits that eluted with 350 mM NaCl (designated 350). In neonatal cerebellum at P10, the relative abundance of the two isoforms was reversed such that approximately 50% of the cytosolic calmodulin-dependent kinase activity was recovered in the 350 isoform, whereas only 20% of the total cytosolic kinase activity was recovered in the 150 isoform. Previous studies indicate that cerebellar granule cells may contain an all beta',beta isoform of CaM kinase II that lacks alpha subunit. Thus, to assess the cell-specific localization of kinase isoforms within cerebellum, cytosol prepared from primary cultures of rat cerebellar granule cells was applied to cation-exchange chromatography and analyzed for calmodulin-dependent kinase activity. The cells contained both isoforms of the kinase that were present in fresh tissue suggesting that granule cell-enriched cultures express all three kinase subunits. The data demonstrate that rat cerebellum contains unique mixtures of CaM kinase II isoenzymes and that their expression is developmentally regulated.  相似文献   

13.
Prenylation (or geranylgeranylation) of Rab GTPases is catalysed by RGGT (Rab geranylgeranyl transferase) and requires REP (Rab escort protein). In the classical pathway, REP associates first with unprenylated Rab, which is then prenylated by RGGT. In the alternative pathway, REP associates first with RGGT; this complex then binds and prenylates Rab proteins. In the present paper we show that REP mutants defective in RGGT binding (REP1 F282L and REP1 F282L/V290F) are unable to compete with wild-type REP in the prenylation reaction in vitro. When over-expressed in cells, REP wild-type and mutants are unable to form stable cytosolic complexes with endogenous unprenylated Rabs. These results suggest that the alternative pathway may predominate in vivo. We also extend previous suggestions that GGPP (geranylgeranyl pyrophosphate) acts as an allosteric regulator of the prenylation reaction. We observed that REP-RGGT complexes are formed in vivo and are unstable in the absence of intracellular GGPP. RGGT increases the ability of REP to extract endogenous prenylated Rabs from membranes in vitro by stabilizing a soluble REP-RGGT-Rab-GG (geranylgeranylated Rab) complex. This effect is regulated by GGPP, which promotes the dissociation of RGGT and REP-Rab-GG to allow delivery of prenylated Rabs to membranes.  相似文献   

14.
[3H]Cyclosporin diaziridine, a new photoaffinity label, enters rat liver cells in the dark. Photoaffinity labeling of isolated rat liver-cell plasma membranes with this probe modifies several polypeptides with molecular mass of 200, 85, 54, 50, 34 kDa. The major labeled protein of 85 kDa represents 2% of the total plasma membrane protein. A 50 kDa protein is heavily labeled in freshly isolated rat hepatocytes at low temperature and after short incubation in the dark. The 85 kDa protein becomes substituted after longer preincubation periods at temperatures above 10 degrees C. This suggests a localisation at the cytoplasmic side of the membrane. Several controls point to a specific interaction with the above mentioned proteins. Comparison of [3H]cyclosporin-diaziridine- and isothiocyanatobenzamido[3H] cholic acid-labeled membrane proteins reveals identity of binding proteins with the exception of the 85 kDa protein. However, the interaction of bile acids with the 85 kDa protein became apparent at higher concentrations as demonstrated by the differential photoaffinity labeling experiments. In the cytosol of rat liver cells, further [3H]cyclosporin-diaziridine binding proteins could be identified. In particular, a 17 kDa polypeptide was found which appears similar to cyclophilin, a protein known to be present in T-lymphocytes (R. Handschumacher et al. (1984) Science 226, 544-547: Cyclophilin. A specific cytosolic binding protein for cyclosporin A). Proteins with molecular mass of 90, 56, 30, 24, 20 kDa are labeled in AS-30D ascites hepatoma cells and those with molecular mass of 200, 150, 80, 70, 42, 25 kDa in Ehrlich ascites tumor cells.  相似文献   

15.
The original article to which this Erratum refers was published in J. Cell. Physiol. (2003) 197(3) 400–408 . Rab3D is a low molecular weight GTP‐binding protein believed to be involved with regulated secretion in many cell types. In parotid, Rab3D is localized to secretory granule membranes or present in the cytosol as a complex with Rab escort protein. In the present study, we examined the redistribution of membrane‐associated Rab3D during secretion in permeabilized parotid acini. When permeabilized acini were stimulated with calcium and cAMP, amylase release increased greater than twofold over basal. Quantitative immunoblotting of subcellular fractions revealed that Rab3D did not dissociate from parotid membranes during secretion. Immunohistochemical staining demonstrated that Rab3D co‐localizes with amylase containing granules that are found in the apical pole of the cell. Upon stimulation with calcium and cAMP, Rab3D and amylase immunostaining of granules appeared to be more dispersed. However, Rab3D immunostaining was not observed on the plasma membrane and appeared to reside in the apical cytoplasm. To examine the role of Rab3D in amylase release, cytosolic extracts containing myc‐tagged Rab3D and Rab3DQ81L, a GTP‐binding mutant, were prepared and incubated with streptolysin O‐permeabilized acini. Rab3D, but not Rab3DQ81L, bound to parotid membranes suggesting that Rab3D‐binding to parotid membranes is guanine nucleotide‐dependent. Moreover, wild‐type and mutant Rab3D inhibited agonist‐induced amylase release from permeabilized parotid acini. These observations indicate that in parotid acini, Rab3D does not dissociate from parotid membranes or redistribute to the plasma membrane during secretion, and may play an inhibitory role in regulated secretion. The fact that both wild‐type Rab3D and the GTP‐binding mutant inhibit amylase release suggests that binding of Rab3D to the membrane is not essential for secretory inhibition. J. Cell. Physiol. 199: 316, 2004© 2004 Wiley‐Liss, Inc.  相似文献   

16.
T J Tan  P Vollmer  D Gallwitz 《FEBS letters》1991,291(2):322-326
Two GTPase-activating proteins of apparent molecular mass of 100 kDa and 30 kDa have been partially purified from porcine liver cytosol using mammalian Ypt1/Rab1 protein as substrate. Both proteins act most efficiently on Ypt1/Rab1p, but are inactive with H-Ras p21. From the budding yeast Saccharomyces cerevisiae, a cytosolic 40 kDa yptGAP was partially purified. It accelerates the intrinsic GTPase activity of wild-type Ypt1p but not of H-Ras p21 or a mutant ypt1p with an amino acid substitution of the effector domain which renders the protein functionally inactive in yeast cells.  相似文献   

17.
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho‐GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho‐GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase‐I. We examined age‐related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase‐I in brain tissue of 3‐ and 23‐month‐old C57BL/6 mice. We report a shift in the cellular localization of Rho‐GTPases toward reduced levels of membrane‐associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age‐related reduction in membrane‐associated Rho proteins was associated with a reduction in GGTase‐Iβ levels that regulates binding of GGPP to Rho‐GTPases. Proteins prenylated by GGTase‐II were not reduced in aged brain indicating a specific targeting of GGTase‐I in the aged brain. Inhibition of GGTase‐I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane‐associated Rho proteins in aged brain in association with down‐regulation of GGTase‐Iβ. This down‐regulation could be one of the mechanisms causing age‐related weakening of synaptic plasticity.

  相似文献   


18.
Cloning, mapping and characterization of the human RAB27A gene   总被引:7,自引:0,他引:7  
Choroideremia (CHM) is an X-linked retinal degenerative disease that results from mutations in Rab Escort Protein-1 (REP1). REP1 acts in the prenylation of Rab GTPases, regulators of intracellular protein trafficking. Rab27a is unique among Rabs in that it is selectively unprenylated in CHM cells, suggesting that the degenerative process in CHM may result from unprenylation and consequent loss-of-function of Rab27a. As a first step towards the analysis of the Rab27a protein in patients, we report here the characterization of the human RAB27A gene. The putative protein encoded by this gene shares 96% identity with the previously cloned rat homologue. The RAB27A gene comprises five coding exons and two non-coding exons, of which one is alternatively used, and spans approximately 65 kb of DNA. There are three alternative poly-A addition sites in the long 3' UTR and also six potential single-nucleotide polymorphisms. The gene is located on chromosome 15q15-21.1, as determined by fluorescent in situ hybridization, and between markers D15S209 and AFM321ZD5 by radiation hybrid mapping.  相似文献   

19.
Bile salt-dependent lipase (BSDL) was detected in human SOJ-6 and rat AR4-2J pancreatic cells. Whereas AR4-2J cells actively secreted the enzyme, BSDL was retained within the Golgi compartment of SOJ-6 cells. Because Rab6 is involved in vesicle transport in the Golgi apparatus and the trans-Golgi network, we confirmed the presence of Rab6 in these cells. In rat AR4-2J cells, Rab6 as well as Rab1A/B and Rab2, partitioned between the cytosol and microsomes. In SOJ-6 cells Rab1A/B and Rab2 also partitioned between the cytosol and microsomes, but Rab6 was strictly associated with microsome membranes, suggesting a specific defect of Rab6 cycling in human SOJ-6 cells. The apparent defect of cycling in these cells is not due to the expression of a defective Rab6 since its correct sequence was confirmed. We further demonstrated that AR4-2J and SOJ-6 cells express the Rab-GDIbeta and Rab-GDIalpha isoforms, respectively. However, the sequence of Rab-GDIbeta, which may be the main form expressed by SOJ-6 cells, identified a few substitutions located in regions that are essential for Rab-GDI function. We conclude that the deficient secretion of BSDL by SOJ-6 cells could be due to the expression of defective Rab-GDIbeta. In spite of the alterations in Rab-GDIbeta, membrane proteins such as CD71 and NHE3 were correctly localized to the cell plasma membrane of SOJ-6 cells, suggesting that two functional distinct secretory pathway coexist in pancreatic cells.  相似文献   

20.
Rab3D is a low molecular weight GTP-binding protein believed to be involved with regulated secretion in many cell types. In parotid, Rab3D is localized to secretory granule membranes or present in the cytosol as a complex with Rab escort protein. In the present study, we examined the redistribution of membrane-associated Rab3D during secretion in permeabilized parotid acini. When permeabilized acini were stimulated with calcium and cAMP, amylase release increased greater than twofold over basal. Quantitative immunoblotting of subcellular fractions revealed that Rab3D did not dissociate from parotid membranes during secretion. Immunohistochemical staining demonstrated that Rab3D co-localizes with amylase containing granules that are found in the apical pole of the cell. Upon stimulation with calcium and cAMP, Rab3D and amylase immunostaining of granules appeared to be more dispersed. However, Rab3D immunostaining was not observed on the plasma membrane and appeared to reside in the apical cytoplasm. To examine the role of Rab3D in amylase release, cytosolic extracts containing myc-tagged Rab3D and Rab3DQ81L, a GTP-binding mutant, were prepared and incubated with streptolysin O-permeabilized acini. Rab3D, but not Rab3DQ81L, bound to parotid membranes suggesting that Rab3D-binding to parotid membranes is guanine nucleotide-dependent. Moreover, wild-type and mutant Rab3D inhibited agonist-induced amylase release from permeabilized parotid acini. These observations indicate that in parotid acini, Rab3D does not dissociate from parotid membranes or redistribute to the plasma membrane during secretion, and may play an inhibitory role in regulated secretion. The fact that both wild-type Rab3D and the GTP-binding mutant inhibit amylase release suggests that binding of Rab3D to the membrane is not essential for secretory inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号