首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-dependent Clp protease in chloroplasts of higher plants   总被引:7,自引:1,他引:7  
The best-known proteases in plastids are those that belong to families common to eubacteria. One of the first identified was the ATP-dependent caseinolytic protease (Clp), whose structure and function have been well characterized in Escherichia coli . Plastid Clp proteins in higher plants are surprisingly numerous and diverse, with at least 16 distinct Clp proteins in the model plant Arabidopsis thaliana . Multiple paralogues exist for several of the different types of plastid Clp protein, with the most extreme being five for the proteolytic subunit ClpP. Both biochemical and genetic studies have recently begun to reveal the intricate structural interactions between the various Clp proteins, and their importance for chloroplast function and plant development. Much of the recent data suggests that the function of many of the Clp proteins probably affects more specific processes within chloroplasts, in addition to the more general 'housekeeping' role previously assumed.  相似文献   

2.
3.
Halperin T  Ostersetzer O  Adam Z 《Planta》2001,213(4):614-619
The chloroplast ATP-dependent Clp protease (EC 3.4.21.92) is composed of the proteolytic subunit ClpP and the regulatory ATPase, ClpC. Although both subunits are found in the stroma, the interaction between the two is dynamic. When immunoprecipitation with antibodies against ClpC was performed on stroma from dark-adapted pea (Pisum sativum L. cv. Alaska) chloroplasts, ClpC but not ClpP was precipitated. However, when stroma was supplemented with ATP, both ClpC and ClpP were precipitated. Co-immunoprecipitation was even more efficient in the presence of ATP-gamma-S, suggesting that the association between regulatory and proteolytic subunits is dependent on binding of ATP to ClpC, but not its hydrolysis. To further test this association, stroma was fractionated by column chromatography, and the presence of Clp subunits in the different fractions was monitored immunologically. When stroma depleted of ATP was fractionated on an ion-exchange column, ClpP and ClpC migrated separately, whereas in the presence of ATP-gamma-S both subunits co-migrated. Similar results were observed in size-exclusion chromatography. To further characterize the precipitated enzyme, its proteolytic activity was assayed by testing its ability to degrade beta-casein. No degradation was observed in the absence of ATP, and degradation was inhibited in the presence of phenylmethylsulfonyl fluoride, consistent with Clp being an ATP-dependent serine protease. The activity of the isolated enzyme was further tested using chimeric OE33 as a model substrate. This protein was also degraded in an ATP-dependent manner, supporting the suggested role of Clp protease as a major housekeeping protease in the stroma.  相似文献   

4.
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.  相似文献   

5.
6.
Proteolysis functions as a precise regulatory mechanism for a broad spectrum of cellular processes. Such control impacts not only on the stability of key metabolic enzymes but also on the effective removal of terminally damaged polypeptides. Much of this directed protein turnover is performed by proteases that require ATP and, of those in bacteria, the Clp protease from Escherichia coli is one of the best characterized to date. The Clp holoenzyme consists of two adjacent heptameric rings of the proteolytic subunit known as ClpP, which are flanked by a hexameric ring of a regulatory subunit from the Clp/Hsp100 chaperone family at one or both ends. The recently resolved three-dimensional structure of the E. coli ClpP protein has provided new insights into its interaction with the regulatory/chaperone subunits. In addition, an increasing number of studies over the last few years have recognized the added complexity and functional importance of ClpP proteins in other eubacteria and, in particular, in photosynthetic organisms ranging from cyanobacteria to higher plants. The goal of this review is to summarize these recent findings and to highlight those areas that remain unresolved.  相似文献   

7.
8.
Interruption of the (p)ppGpp synthetase gene ( rel ) of Sorangium cellulosum So ce56 resulted in loss of ppGpp accumulation after norvaline treatment during exponential growth phase. The rel mutant failed to produce wild-type levels of the polyketides chivosazol and etnangien in production media. In wild-type cells expression of the chivosazol biosynthetic operon can be significantly increased by norvaline or α-methylglucoside. This induction does not occur in the rel mutant. The rel mutant also lost the capability to form multicellular fruiting bodies under nutrient starvation.  相似文献   

9.
Streptomyces coelicolor colonies differentiate both morphologically, producing aerial spore chains, and physiologically, producing antibiotics as secondary metabolites. Single mutations, which block both aspects of differentiation, define bld (bald colony) genes. To identify new bld genes, mutagenized colonies were screened for blocks in the earliest stage of sporulation, the formation of aerial mycelia, and blocks in antibiotic synthesis. The mutations in 12 mutants were mapped; in each strain, the pleiotropic phenotype was due to a single mutation. Seven of the strains contained mutations in known bld loci, bldA and bldB. Three strains contained mutations in a new locus, bldG, and two contained mutations in another new locus, bldH. Like the previously defined bldA mutants, the bldG and bldH mutants were developmentally blocked on glucose. On a variety of carbon sources whose utilization was subject to glucose repression, the developmental blocks were partially relieved for bldG (and bldA) mutants and fully relieved for bldH mutants. These results are compatible with an hypothesis which suggests that there are two alternative controls on S. coelicolor differentiation, one of which is glucose repressible.  相似文献   

10.
The ATP-dependent Clp protease is by far the most intricate protease in chloroplasts of vascular plants. Structurally, it is particularly complex with a proteolytic core complex containing 11 distinct subunits along with three potential chaperone partners. The Clp protease is also essential for chloroplast development and overall plant viability. Over the past decade, many of the important characteristics of this crucial protease have been revealed in the model plant species Arabidopsis thaliana. Despite this, challenges still remain in fully resolving certain key features, in particular, how the assembly of this multisubunit protease is regulated, the full range of native protein substrates and how they are targeted for degradation and how this complicated enzyme might have developed from simpler bacterial forms. This article focuses upon the recent advances in revealing the details underlying these important features. It also take the opportunity to speculate upon many of these findings in the hope of stimulating further investigation.  相似文献   

11.
The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.  相似文献   

12.
ClpP is the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. Cyanobacterial ClpP protein is encoded by a multigene family, producing up to four distinct isozymes. We have examined the importance of the first ClpP protein (ClpP1) isolated from the cyanobacterium Synechococcus sp. PCC 7942 for acclimation to ecologically relevant UV-B and low-temperature regimens. When the growth light of 50 μmol photons m?2 s?1 was supplemented with 0.5 W m?2 UV-B for 8 h, the constitutive level of ClpP1 rose eightfold after an initial lag of 1 h. Wild-type cells readily acclimated to this UV-B level, recovering after the initial stress to almost the same growth rate as that before UV-B exposure. Growth of a clpP1 null mutant (ΔclpP1), however, was severely inhibited by UV-B, being eight times slower than the wild type after 8 h. In comparison, ClpP1 content increased 15-fold in wild-type cultures shifted from 37°C to 25°C for 24 h. Wild-type cultures readily acclimated to 25°C after 24 h, whereas the ΔclpP1 strain did not and eventually lost viability with prolonged cold treatment. During acclimation to either UV-B or cold, photosynthesis in the wild type was initially inhibited upon the shift but then recovered. Photosynthesis in ΔclpP1 cultures, however, was more severely inhibited by the stress treatment and failed to recover. Acclimation was also monitored by examining the exchange of photosystem II reaction centre D1 proteins that occurs in wild-type Synechococcus during conditions of excitation stress. During both cold and UV-B shifts, wild-type cultures replaced the acclimative form of D1 (D1:1) with the alternative D1 form 2 (D1:2) within the first hours. Once acclimated to either 25°C or 0.5 W m?2 UV-B, D1:2 was exchanged back for D1:1. In ΔclpP1 cultures, this second exchange between D1 forms did not occur, with D1:2 remaining the predominant D1 form. Our results demonstrate that the ATP-dependent Clp protease is an essential component of the cold and UV-B acclimation processes of Synechococcus.  相似文献   

13.
The ATP-dependent Clp protease in plant chloroplasts consists of a heterogeneous proteolytic core containing multiple ClpP and ClpR paralogues. In this study, we have examined in detail the only viable knockout mutant to date of one of these subunits in Arabidopsis thaliana, ClpR1. Loss of ClpR1 caused a slow-growth phenotype, with chlorotic leaves during early development that later partially recovered upon maturity. Analysis of the Clp proteolytic core in the clpR1 mutant (clpR1-1) revealed approx. 10% of the wild-type levels remaining, probably due to a relative increase in the closely related ClpR3 protein and its partial substitution of ClpR1 in the core complex. A proteomic approach using an in organello proteolytic assay revealed 19 new potential substrates for the chloroplast Clp protease. Many of these substrates were constitutive enzymes involved in different metabolic pathways, including photosynthetic carbon fixation, nitrogen metabolism and chlorophyll/haem biosynthesis, whereas others function in housekeeping roles such as RNA maturation, protein synthesis and maturation, and recycling processes. In contrast, degradation of the stress-related chloroplast proteins Hsp21 (heat-shock protein 21) and lipoxygenase 2 was unaffected in the clpR1-1 line and thus not facilitated by the Clp protease. Overall, we show that the chloroplast Clp protease is principally a constitutive enzyme that degrades numerous stromal proteins, a feature that almost certainly underlies its vital importance for chloroplast function and plant viability.  相似文献   

14.
15.
16.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria   总被引:2,自引:0,他引:2  
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.  相似文献   

17.
Streptomyces sp. MA406-A-1 produced formycin (a nucleoside antibiotic) in parallel with cell growth in a synthetic medium. When the synthetic medium was supplemented with 1% (w/v) Casamino acids, however, formycin was produced only after the end of exponential growth. The intracellular ppGpp pool increased gradually towards the end of exponential growth and was maximal at the beginning of formycin production. After shift down from Casamino acids medium to synthetic medium, the ppGpp pool increased immediately, while the GTP pool decreased; under such conditions, the ability to produce formycin increased eightfold. Relaxed (rel) mutants, the first isolated for a Streptomyces species, were found at high incidence (10%) among spontaneous thiopeptin-resistant isolates and had severely reduced abilities to accumulate ppGpp. These rel mutants also failed to produce formycin under the usual culture conditions and exhibited numerous pleiotropic effects such as an inability to produce melanin and an extended delay of aerial mycelium formation. Thus Streptomyces sp. exhibited a typical stringent response, and the response initiated (or was needed for) the induction of secondary metabolism. The response may have also participated in the initiation of aerial mycelium formation by decreasing the intracellular GTP pool.  相似文献   

18.
19.
Clp protease is a high relative molecular mass, ATP-dependent protease found in the cytoplasm of Escherichia coli. Clp protease is composed of two protein components, Clp A, which has ATPase activity, and Clp P, which has the proteolytic active site and is activated by Clp A in the presence of ATP. Clp P subunits (Mr = 21,500) are arranged in two hexagonal rings directly superimposed on each other, and under low salt conditions two dodecamers associate to form a particle with Mr approximately 440,000. Clp A (subunit Mr = 83,000) and Clp P do not associate in the absence of nucleotide, but Clp A with ATP bound associates with Clp P to form an active proteolytic complex with Mr approximately 700,000. Although adenosine 5'-[beta gamma-imido]triphosphate (AMPPNP) weakly promotes association between Clp A and Clp P, non-hydrolysable analogues of ATP do not activate proteolysis, indicating that association between the components is not sufficient to allow proteolysis. Association between Clp A and Clp P does not alter the basal ATPase activity of Clp A, but addition of protein substrates is accompanied by an increase in ATP hydrolysis by Clp A. Chemically-inactivated Clp P or inactive mutants of Clp P also associate with Clp A, but no increase in the ATPase activity of Clp A is observed, either in the presence or absence of protein substrates, when Clp P is inactive. Thus the increased ATP hydrolysis is dependent on active proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The ATP-binding component (Component II, hereafter referred to as ClpA) of a two-component, ATP-dependent protease from Escherichia coli has been purified to homogeneity. ClpA is a protein with subunit Mr 81,000. It has an intrinsic ATPase activity and activates degradation of protein substrates only in the presence of a second component (Component I, hereafter referred to as ClpP), Mg2+, and ATP. The amount of ClpA varies by less than a factor of 2 in cells grown in different media and at temperatures from 30 to 42 degrees C. ClpA does not appear to be a heat-shock protein since its synthesis is not dependent on htpR. Antibodies against purified ClpA were used to identify lambda transducing phage bearing the clpA gene. The cloned gene contains a DNA sequence expected to code for the first 28 amino acids of ClpA, which were determined by protein sequencing of purified ClpA. The clpA gene in the phage was mutated by insertion of delta kan defective transposons and the mutations were transferred to E. coli by homologous recombination. The clpA gene was mapped to 19 min on the E. coli chromosome. Mutant cells with insertions early in the gene produce no ClpA protein detectable in Western blots, and extracts of such mutant cells have no detectable ClpA activity. clpA- mutants grow well under all conditions tested and are not defective in turnover of proteins during nitrogen starvation nor in the turnover of such highly unstable proteins as the lambda proteins O, N, and cII, or the E. coli proteins SulA, RcsA, and glutamate dehydrogenase. The degradation of abnormal canavanine-containing proteins is defective in clpA mutants especially in cells that also have a lon- mutation. Extracts of clpA- lon- cells have ATP-dependent casein degrading activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号