首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.  相似文献   

2.
We tested the importance of aerobic metabolism to human running speed directly by altering inspired oxygen concentrations and comparing the maximal speeds attained at different rates of oxygen uptake. Under both normoxic (20.93% O2) and hypoxic (13.00% O2) conditions, four fit adult men completed 15 all-out sprints lasting from 15 to 180 s as well as progressive, discontinuous treadmill tests to determine maximal oxygen uptake and the metabolic cost of steady-state running. Maximal aerobic power was lower by 30% (1.00 +/- 0.15 vs. 0.77 +/- 0.12 ml O2. kg-1. s-1) and sprinting rates of oxygen uptake by 12-25% under hypoxic vs. normoxic conditions while the metabolic cost of submaximal running was the same. Despite reductions in the aerobic energy available for sprinting under hypoxic conditions, our subjects were able to run just as fast for sprints of up to 60 s and nearly as fast for sprints of up to 120 s. This was possible because rates of anaerobic energy release, estimated from oxygen deficits, increased by as much as 18%, and thus compensated for the reductions in aerobic power. We conclude that maximal metabolic power outputs during sprinting are not limited by rates of anaerobic metabolism and that human speed is largely independent of aerobic power during all-out runs of 60 s or less.  相似文献   

3.
The net energy cost of running per unit of body mass and distance (Cr, ml O2.kg-1.km-1) was determined on ten amateur runners before and immediately after running 15, 32 or 42 km on an indoor track at a constant speed. The Cr was determined on a treadmill at the same speed and each run was performed twice. The average value of Cr, as determined before the runs, amounted to 174.9 ml O2.kg-1.km-1, SD 13.7. After 15 km, Cr was not significantly different, whereas it had increased significantly after 32 or 42 km, the increase ranging from 0.20 to 0.31 ml O2.kg-1.km-1 per km of distance (D). However, Cr before the runs decreased, albeit at a progressively smaller rate, with the number of trials (N), indicating an habituation effect (H) to treadmill running. The effects of D alone were determined assuming that Cr increased linearly with D, whereas H decreased exponentially with increasing N, i.e. Cr = Cr0 + a D + He-bN. The Cr0, the "true" energy cost of running in nonfatigued subjects accustomed to treadmill running, was assumed to be equal to the average value of Cr before the run for N equal to or greater than 7 (171.1 ml O2.kg-1.km-1, SD 12.7; n = 30).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The role of anaerobic ability in middle distance running performance   总被引:5,自引:0,他引:5  
The purpose of this study was to assess the relationship between anaerobic ability and middle distance running performance. Ten runners of similar performance capacities (5 km times: 16.72, SE 0.2 min) were examined during 4 weeks of controlled training. The runners performed a battery of tests each week [maximum oxygen consumption (VO2max), vertical jump, and Margaria power run] and raced 5 km three times (weeks 1, 2, 4) on an indoor 200-m track (all subjects competing). Regression analysis revealed that the combination of time to exhaustion (TTE) during the VO2max test (r2 = 0.63) and measures from the Margaria power test (W.kg-1, r2 = 0.18; W, r2 = 0.05) accounted for 86% of the total variance in race times (P less than 0.05). Regression analysis demonstrated that TTE was influenced by both anaerobic ability [vertical jump, power (W.kg-1) and aerobic capacity (VO2max, ml.kg-1.min-1)]. These results indicate that the anaerobic systems influence middle distance performance in runners of similar abilities.  相似文献   

5.
Anaerobic energy capacity was evaluated by maximal oxygen deficit (MOD) as well as by blood gas and muscle biopsy variables during short exhausting running in six recreational (RR) and eight competitive sprint and middle distance runners (SMDR). On 3 days runs to exhaustion were executed. Two runs were performed at a treadmill gradient of 15% at speeds which resulted in exhaustion after approximately 1 (R15%, 1min) and 2–3 min (R15%, 2–3min), respectively. On the 3rd day, the subjects ran with the treadmill at a gradient of 1% at a speed which caused exhaustion after 2–3 min (R1%, 2–3min). The runner performance was assessed from 400 m [RR, median 64.8 (range 62.2–69.6) s; SMDR, median 49.4 (range 48.5–52.0) s] and 800 m [RR, median 158.8 (range 153.3–170.2) s; SMDR, median 115.2 (range 113.3–123.3) s] track times. Muscle biopsies from gastrocnemius muscle were obtained before and immediately after R15%, 2–3min, from which muscle lactate and creatine phosphate (CP) concentrations, fibre type distribution, capillaries per fibre, total lactate dehydrogenase (LDH) activity and the LDH isoenzyme pattern were determined. The MOD increased with the treadmill gradient and duration. During both treadmill and track runs, SMDR performance was superior to that of RR, but no significant differences were observed with respect to MOD, muscle fibre type distribution, total LDH activity, its iso-enzyme pattern, changes in muscle lactate or CP concentrations. However, after treadmill runs, peak venous lactate concentration and partial pressures of carbon dioxide were higher, and pH lower in SMDR. Also the number of capillaries per muscle fibre and the maximal oxygen uptake were larger in SMDR. These findings would suggest that the superior performance of SMDR depended more on their aerobic than on their anaerobic capacity.  相似文献   

6.
Seeking to develop a simple ambulatory test of maximal aerobic power (VO(2 max)), we hypothesized that the ratio of inverse foot-ground contact time (1/t(c)) to heart rate (HR) during steady-speed running would accurately predict VO(2 max). Given the direct relationship between 1/t(c) and mass-specific O(2) uptake during running, the ratio 1/t(c). HR should reflect mass-specific O(2) pulse and, in turn, aerobic power. We divided 36 volunteers into matched experimental and validation groups. VO(2 max) was determined by a treadmill test to volitional fatigue. Ambulatory monitors on the shoe and chest recorded foot-ground contact time (t(c)) and steady-state HR, respectively, at a series of submaximal running speeds. In the experimental group, aerobic fitness index (1/t(c). HR) was nearly constant across running speed and correlated with VO(2 max) (r = 0.90). The regression equation derived from data from the experimental group predicted VO(2 max) from the 1/t(c). HR values in the validation group within 8.3% and 4.7 ml O(2) x kg(-1) x min(-1) (r = 0.84) of measured values. We conclude that simultaneous measurements of foot-ground constant times and heart rates during level running at a freely chosen constant speed can provide accurate estimates of maximal aerobic power.  相似文献   

7.
The evaluation of performance through the application of adequate physical tests during a sportive season may be a useful tool to evaluate training adaptations and determine training intensities. For runners, treadmill incremental VO(2)max tests with gas exchange analysis have been widely used to determine maximal and submaximal parameters such as the ventilatory threshold (VT) and respiratory compensation point (RCP) running speed. However, these tests often differ in methodological characteristics (e.g., stage duration, grade, and speed increment size), and few studies have examined the reproducibility of their protocol. Therefore, the aim of this study was to verify the reproducibility and determine the running speeds related to maximal and submaximal parameters of a specific incremental maximum effort treadmill protocol for amateur runners. Eleven amateur male runners underwent 4 repetitions of the protocol (25-second stages, each increasing by 0.3 km·h in running speed while the treadmill grade remained fixed at 1%) after 3 minutes of warm-up at 8-8.5 km·h. We found no significant differences in any of the analyzed parameters, including VT, RCP, and VO(2)max during the 4 repetitions (p > 0.05). Further, the results related to running speed showed high within-subject reproducibility (coefficient of variation < 5.2%). The typical error (TE) values for running speed related to VT (TE = 0.62 km·h), RCP (TE = 0.35 km·h), and VO(2)max (TE = 0.43 km·h) indicated high sensitivity and reproducibility of this protocol. We conclude that this VO(2)max protocol facilitates a clear determination of the running speeds related to VT, RCP, and VO(2)max and has the potential to enable the evaluation of small training effects on maximal and submaximal parameters.  相似文献   

8.
The predictability of anaerobic threshold (AT) from maximal aerobic power, distance running performance, chronological age, and total running distance achieved on the treadmill (TRD) was investigated in a sample of 53 male distance runners, 17-23 years of age. The dependent variable was oxygen uptake (Vo2) at which AT was detected (i.e. Vo2 @ AT). A regression analysis of the data indicated Vo2 @ AT could be predicted from the following four measurements with a multiple R = 0.831 and a standard error of the estimate of 2.66 ml . min-1 . kg-1: Vo2max (67.9 +/- 5.7 ml . min-1 . kg-1), 1,500-m running performance (254.5 +/- 14.2 s), TRD (6.82 +/- 1.13 km), and age (19.4 +/- 2.2 years). When independent variables were limited to Vo2max (X1) and 1,500-m running performance (X2) for simpler assessment, a multiple R = 0.806 and a standard error of the estimate of 2.76 ml . min-1 . kg-1 were computed. A useful prediction equation with this predictive accuracy was considered to be Vo2 @ AT = 0.386X1 - 0.128X2 + 57.11. To determine if the prediction equation developed for the 53 male distance runners could be generalized to other samples, cross-validation of the equation was tested, using 21 different distance runners, 17-22 years of age. A high correlation (R = 0.927) was obtained between Vo2 AT predicted from the above equation and directly measured Vo2 @ AT. It is concluded that the generalized equation may be applicable to young distance runners for indirect assessment of Vo2 @ AT.  相似文献   

9.
An accepted measure of anaerobic capacity is the maximal O2 deficit. But it is not feasible to use O2 deficit if > or =10 submaximal runs are needed to extrapolate the O2 demand of high velocity running (Medb? et al. 1988). Recently, an alternative method to determine O2 deficit was proposed (Hill 1996) using only results of supramaximal cycle ergometer tests. The purpose of this study was to evaluate this alternative method with data from treadmill tests. Twenty-six runners ran at 95%, 100%, 105%, and 110% of their velocity at VO2max. Times to exhaustion, velocity, and accumulated oxygen uptake (VO2) from each individual's four tests were fit to the following equation using iterative nonlinear regression: accumulated VO2 = (O2 demand x velocity x time)-O2 deficit. The mean value s derived for O2 demand and O2 deficit were 0.198+/-0.031 ml x kg(-1) x m(-1) and 42+/-22 ml x kg(-1). SEE for the parameters were 0.007+/-0.007 ml x kg(-1) x m(-1) and 8+/-10 ml x kg(-1), respectively. Mean R2 was 0.998+/-0.003. It was concluded that O2 deficit can be determined from all-out treadmill tests without the need to perform submaximal tests.  相似文献   

10.
We hypothesized that the maximum mechanical power outputs that can be maintained during all-out sprint cycling efforts lasting from a few seconds to several minutes can be accurately estimated from a single exponential time constant (k(cycle)) and two measurements on individual cyclists: the peak 3-s power output (P(mech max)) and the maximum mechanical power output that can be supported aerobically (P(aer)). Tests were conducted on seven subjects, four males and three females, on a stationary cycle ergometer at a pedal frequency of 100 rpm. Peak mechanical power output (P(mech max)) was the highest mean power output attained during a 3-s burst; the maximum power output supported aerobically (P(aer)) was determined from rates of oxygen uptake measured during a progressive, discontinuous cycling test to failure. Individual power output-duration relationships were determined from 13 to 16 all-out constant load sprints lasting from 5 to 350 s. In accordance with the above hypothesis, the power outputs measured during all-out sprinting efforts were estimated to within an average of 34 W or 6.6% from P(mech max), P(aer), and a single exponential constant (k(cycle) = 0.026 s(-1)) across a sixfold range of power outputs and a 70-fold range of sprint trial durations (R2 = 0.96 vs. identity, n = 105; range: 180 to 1,136 W). Duration-dependent decrements in sprint cycling power outputs were two times greater than those previously identified for sprint running speed (k(run) = 0.013 s(-1)). When related to the respective times of pedal and ground force application rather than total sprint time, decrements in sprint cycling and running performance followed the same time course (k = 0.054 s(-1)). We conclude that the duration-dependent decrements in sprinting performance are set by the fractional duration of the relevant muscular contractions.  相似文献   

11.
The criteria of max VO2 and max O2D which are traditionally used in studying aerobic and anaerobic work capacity, have the different dimensions. While max VO2 is an index of the power of aerobic energy output, max O2D assesses the capacity of anaerobic sources. For a comprehensive assessment of physical working capacity of athletes, both aerobic and anaerobic capabilities should be represented in three dimensions, i.e. in indexes of power, capacity and efficiency. Experimental procedures have been developed for assessing these three parameters in treadmill running tests. It is proposed to assess anaerobic power by measuring excess CO2, concurrently with determination of max VO2. Maximal aerobic capacity is established as the product of max VO2 by the time of max VO2 maintenance determined in a special test with running at critical speed. The erogmetric criteria derived on the basis of the tests proposed, may be used for systematization of various physical work loads.  相似文献   

12.
To assess the most important determinant for successful distance running (800 m, 1500 m and 3000 m events) in female athletes, measurements of several anaerobic indices were made (peak power, mean power) using the Wingate anaerobic test (WAnT), and aerobic indices such as oxygen uptake (VO2) or running velocity (v) at lactate threshold (LT), VO2 or v at onset of blood lactate accumulation (OBLA), running economy (RE), and maximal oxygen uptake were determined using the incremental treadmill test. The RE was represented by a VO2 value measured at 240 m.min-1 of a standard treadmill velocity. A stepwise multiple regression analysis (SAS stepwise procedure) combined the best features of forward inclusion and backward elimination to determine the most important factors in predicting the performance of running these distances as dependent variables. The stepwise procedure showed that the blood lactate variables such as LT and/or OBLA are highly correlated with, and contributed to predicting performance running 800 m-3000 m, whereas the anaerobic component was related only to running 800 m. In conclusion, blood lactate variables account for a large part of the variation in distance running performance in female as in male runners. The component of the anaerobic system which can be measured by the WAnT was shown to contribute to performance in running 800 m, but not in longer distances.  相似文献   

13.
Aspects of anaerobic and aerobic energy conversion are investigated using a mathematical model of running in conjunction with world-record statistics. Analysis of the data shows that over distances from 1500 to 10,000 m the anaerobic energy utilised is constant and independent of running distance. This result is consistent with the view that the full potential of the anaerobic capacity is available for conversion during extended periods of running; the opinions of Gollnick and Hermansen (1973) and Peronnet and Thibault (1989) that the anaerobic energy contribution declines with race duration are not corroborated. The analysis supports the finding of Peronnet and Thibault (1989) that, for running times below about T = 420 s, the maximum sustainable aerobic power is constant, and that for larger T it then declines progressively. The present analysis shows it falls by some 4.5% over 10,000 m, T approximately 1600 s, indicating that in establishing current world records at 5000 and 10,000 m athletes did not rely solely on glycogen as the source of aerobic metabolism; limited use was made of free fatty acids. For elite male runners, the anaerobic capacity and maximal aerobic power are evaluated as 1570 J/kg and 27.1 W/kg, respectively.  相似文献   

14.
Previous research has related the results of tests of maximum aerobic capacity to performance for endurance athletes. These results are often only able to predict the running velocity of races such as the marathon. This investigation sought to determine the absolute V[Combining Dot Above]O2 at various respiratory exchange ratio (RER) values (0.85, 0.90, 0.95, 1.0, 1.05, and 1.10) by using a third-order polynomial regression to model the physiological responses for V[Combining Dot Above]O2 and RER obtained from an assessment of maximum aerobic capacity. The V[Combining Dot Above]O2 determined was subsequently correlated to race performance. The participants in the study were selected from a population of National Collegiate Athletic Association Division 1 crosscountry runners (male n = 7, female n = 7, age 20.5 ± 0.9 years; height 170.3 ± 8.2 cm; weight 59.7 ± 8.7 kg; V[Combining Dot Above]O2max 57.0 ± 7.8 ml O2·kg·min). Third-order regression analysis resulted in strong curve fitting between the variables (r = 0.949 ± 0.03). Partial correlations (controlled for weight) were used to assess the relationship between oxygen consumption at the desired points of RER and race performance. The partial correlations revealed that the absolute oxygen consumptions at all RER points of interest were significantly correlated to race performance (r > 0.740, p < 0.01). There was a significant difference in the strength of the correlations for the points RER 0.95 (t = 2.68957, p = 0.01), 1.0 (t = 2.18516, p = 0.03), and 1.05 (t = 1.85668, p = 0.04) and the correlations found for RER 0.85. After converting the oxygen consumption at the RER points to estimated horizontal running speeds, only the estimate at RER 1.05 was not statistically different from the actual speed achieved in the culminating XC race. It can be suggested based upon these results that coaches of collegiate crosscountry runners who engage in metabolic testing of athletes examine the estimated running pace at RER 1.05 to gain an insight into a runner's potential.  相似文献   

15.
The purpose of this study was to examine whether substituting 50% of run training volume with cycling ("cross-training") would maintain 3,000-m race time and estimated Vo(2)max in competitive female distance runners during a 5-week recuperative phase. Eleven collegiate runners were randomly assigned to either the run training-only (R) group (n = 6) or the cycle training (R/C) group (n = 5), which cross-trained on alternate days. The groups trained daily at a reduced intensity (75-80% of maximum heart rate). Training volume was similar to the competitive season (40-50 mi x wk(-1)) except that cycling represented 50% of volume for the R/C group. On follow-up, 3,000-m time was 1.4% (9 seconds) slower in the R group and 3.4% (22 seconds) slower in the R/C group. No important change in estimated Vo(2)max was found for either group. It was concluded that cycle cross-training adequately maintained aerobic performance during the recuperative phase between the cross-country and track seasons, comparable to the primary sport of running.  相似文献   

16.
The aim of this study was to verify the influence of the combination of different running speeds and slopes based on main kinematic parameters in both groups of elite (RE) and amateur (RA) marathon runners. All subjects performed various tests on a treadmill at 0, 2, and 7% slopes at different speeds: 3.89, 4.17, 4.44, 4.72, and 5.00 m·s. A high speed digital camera, 210 Hz, has been used to record; Dartfish 5.5Pro has been used to perform a 2D video analysis. Step length (SL), step frequency (SF), flight time (FT), and contact time (CT) were determined and used for comparison. SL, SF, and FT parameters increased, and CT parameter decreased as speed increased. As slopes increased, SL and FT decreased and SF increased in both groups and only CT decreased in RE, whereas in RA, it increased. Data were fitted to the linear regression line (R > 0.95). The 2 groups were significantly different (p < 0.05) in FT, SL, and SF at all speeds in level running. A significant difference between the 2 groups was found in FT at 2 and 7% slopes at all speeds (p < 0.05). Percentage alterations in all variables were greater in the RA group. In conclusion, the choice of optimum SL and SF, through efficient running can be maintained, is influenced not only by speed but also by slopes. Elite runners perform more efficiently than amateur runners who have less experience.  相似文献   

17.
Consistent measurement of maximum running speed overground is problematic due to the difficulty in precise, continual measurement of speed, and the substantial workload in accelerating the body promoting the onset of fatigue. Treadmills remove the requirement for acceleration which enables more repeats. They also allow experiments to be carried out in controlled environments and where space is limited, but they usually depend on manual and subjective speed control. Here we used a draw-wire position sensor and a proportional–derivative (PD) controller to automatically adjust treadmill belt speed of a large equine treadmill. The feedback loop took the real-time position and velocity of the runner relative to the front of the treadmill as input. This control system allowed runners to accelerate from walking speed to a peak running speed within a few strides and then decelerate as quickly as they wished. We used the system to evaluate the variation in maximum speed determination that results from one trial to 10 trials, in eleven individuals. Three trials gave a maximum speed 97.8% of that achieved after ten. The approach used is appropriate for any treadmill where the running zone length is greater than three metres and the speed controller can be externally controlled. Subjects ran 11.5% faster on the treadmill than overground, part of which can be explained by the removal of aerodynamic drag and the fatigue of overground running. Additional factors may, however, contribute to athletes running faster on a treadmill, for instance some aspect of stability or control.  相似文献   

18.
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.  相似文献   

19.
Submaximal and maximal oxygen consumption (VO2) and heart rate (HR) were correlated with running performance in events ranging from 100 yards to 2 miles, using as subjects 20 members of a college track team. In the first of two studies (n=11) a multi-stage walking test was used to determine VO2 and HR. Max VO2 expressed in ml/kg/min, was significantly related to 1 mile run performance but not to any of the other runs. Submaximal HR was significantly related to performance in both the 1 mile and 2 mile runs. Correlations between these physiological parameters and performance in the 220, 440, and 880 yard runs were nonsignificant. Multiple R's using max VO2 (ml/kg/min) and submaximal H were .758 and 9671, respectively, for the 1 and 2 mile runs. In study two (n=9) a running test for VO2 and HR was used, which resulted in a mean max VO2 about 7 ml higher than than elicited in the walking test, implying that for trained runners a running test was a more valid test of aerobic power. Marked relationships were found between body weight and performance, positive for the 100 yard dash and negative for the 2 mile run. Submaximal HR was again significantly related to performance in the 1 and 2 mile runs. Max VO2 was positively related to 2 mile performance and negatively related to 100 yard dash performance. Multiple R's using max VO2 and submaximal HR were .799 and .925 for the 1 and 2 mile runs, respectively. Using submaximal HR and weight the multiple R's were .777 and .945, showing that these two can account for a large amount of the variance in distance running performance. In neither study was submaximal VO2 significantly related to running performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号