首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

2.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

3.
Rough and smooth microsomes and Golgi membranes were incubated with UDP[14C]galactose and the incorporation of radioactivity into the lipid extract and into endogenous protein acceptors were measured. Antagonistic pyrophosphatases were inhibited with ATP and interference from β-galactosidase activity was greatly decreased by carrying out the incubation at pH 7.8. After incubation the particles were centrifuged to remove free oligosaccharide residues. Radioactivity was found in the lipid extract from Golgi membranes but not from rough and smooth microsomes. This radioactivity, however, was not associated with dolichol or retinyl phosphates. The incorporation of radioactivity into proteins of the Golgi fraction was more than double than that of the microsomal fractions. In addition, the transferases in these two types of particles exhibited different properties. Trypsin treatment of intact rough microsomal vesicles, smooth vesicles and Golgi membranes removed about 5, 15 and 50%, respectively, of newly incorporated protein-bound galactose, indicating that the proportion of the newly galactosylated proteins, which are localized at the cytoplasmic surface of the membrane, is lowest in rough microsomes, intermediate in smooth, and highest in Golgi membranes.  相似文献   

4.
Summary The activities of several enzymes involved in the oxidation of ethanol and in the formation of oxaloacetate from acetate were compared in the yeasts Saccharomyces cerevisiae, Hansenula anomala and Rhodotorula glutinis grown on glucose and acetate, respectively. The most striking differences in the regulation of enzyme activities were found for alcohol dehydrogenase, acetaldehyde dehydrogenase, and malate dehydrogenase. The activities of the other enzymes tested behaved rather similar; in all three yeast species the enzymes of the glyoxylic acid by-pass showed the most extensive increase of activity in cells grown on acetate.  相似文献   

5.
The study of the effect of different ethanol concentrations in the medium on the growth and the activity of enzymatic systems involved in ethanol oxidation in Yarrowia lipolytica showed that the cultivation of yeast cells on 1 and 2% ethanol caused their rapid growth and a drastic increase in cell respiration and sensitivity to cyanide already in the first hours of cultivation. At the same time, during cultivation on 3, 4, and 5% ethanol, the growth and respiration of yeast cells were considerably suppressed. All of the ethanol concentrations studied induced the synthesis of cytochrome P-450, its dynamics in cells being dependent on the initial concentration of ethanol in the medium. When the initial concentration of ethanol was 1 and 2%, the content of cytochrome P-450 in cells steeply decreased after a short period of induction. But when the initial concentration of ethanol in the medium was 3 to 5%, the content of cytochrome P-450 in cells was high throughout the cultivation period. The induction of cytochrome P-450 in cells preceded the induction of the NAD-dependent enzymes alcohol dehydrogenase and catalase, which, like cytochrome P-450, are also involved in ethanol oxidation by yeasts. The activity of catalase was higher in the yeast cells grown in the presence of 3 to 5% ethanol than in the cells grown in the presence of 1 and 2% ethanol. The roles played by cytochrome P-450, alcohol dehydrogenase, and catalase in ethanol oxidation by yeast cells are discussed.  相似文献   

6.
The study of the effect of different ethanol concentrations in the medium on the growth and activity of enzymatic systems involved in ethanol oxidation in Yarrowia lipolytica showed that the cultivation of yeast cells on 1 and 2% ethanol caused their rapid growth and a drastic increase in cell respiration and sensitivity to cyanide already in the first hours of cultivation. At the same time, during cultivation on 3, 4, and 5% ethanol, the growth and respiration of yeast cells were considerably suppressed. All of the ethanol concentrations studied induced the synthesis of cytochrome P-450, its dynamics in cells being dependent on the initial concentration of ethanol in the medium. When the initial concentration of ethanol was 1 and 2%, the content of cytochrome P-450 in cells steeply decreased after a short period of induction. However, when the initial concentration of ethanol in the medium was 4 to 5%, the content of cytochrome P-450 in cells was high throughout the cultivation period. The induction of cytochrome P-450 in cells preceded the induction of the NAD-dependent enzymes alcohol dehydrogenase and catalase, which, like cytochrome P-450, are also involved in ethanol oxidation by yeasts. The activity of catalase was higher in the yeast cells grown in the presence of 3 to 5% ethanol than in the cells grown in the presence of 1 and 2% ethanol. The roles played by cytochrome P-450, alcohol dehydrogenase, and catalase in ethanol oxidation by yeast cells are discussed.  相似文献   

7.
X-ray microanalysis showed that vegetative cells, viable resting forms, and nonviable forms (micromummies) of the bacteria Bacillus cereus and Micrococcus luteus and the yeast Saccharomyces cerevisiae differ in the contents of bioelements S, P, Ca, and K and the Ca/K and P/S ratios. Viable resting forms (cystlike refractory cells and bacillar endospores) had more calcium and less phosphorus and potassium than vegetative cells, the difference being higher for bacilli than for micrococci and yeasts. The distinctive feature of all viable resting microbial forms was their low P/S ratios and high Ca/K ratios. The differences revealed in the cellular content and ratios of bioelements probably reflect changes in ionic homeostasis accompanying the transition of vegetative microbial cells to the dormant state. Relevant potassium parameters indicate that the membranes of viable resting forms retain their barrier function. At the same time, the nonviable forms, even morphologically intact, of B. cereus and S. cerevisiae exhibited an anomalously low content of potassium, while those of M. luteus had an anomalously high content of this element. This suggests that the cellular membranes of micromummies lose their barrier function, which results in a free diffusion of potassium ions across the membranes. The possibility of using the elemental composition parameters for quick analysis of the physiological state of microorganisms in natural environments is discussed.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2861-2870
The RER retains a specific subset of ER proteins, many of which have been shown to participate in the translocation of nascent secretory and membrane proteins. The mechanism of retention of RER specific membrane proteins is unknown. To study this phenomenon in yeast, where no RER- specific membrane proteins have yet been identified, we expressed the human RER-specific protein, ribophorin I. In all mammalian cell types examined, ribophorin I has been shown to be restricted to the membrane of the RER. Here we ascertain that yeast cells correctly target, assemble, and retain ribophorin I in their RER. Floatation experiments demonstrated that human ribophorin I, expressed in yeast, was membrane associated. Carbonate (pH = 11) washing and Triton X-114 cloud-point precipitations of yeast microsomes indicated that ribophorin I was integrated into the membrane bilayer. Both chromatography on Con A and digestion with endoglycosidase H were used to prove that ribophorin I was glycosylated once, consistent with its expression in mammalian cells. Proteolysis of microsomal membranes and subsequent immunoblotting showed ribophorin I to have assumed the correct transmembrane topology. Sucrose gradient centrifugation studies found ribophorin I to be included only in fractions containing rough membranes and excluded from smooth ones that, on the basis of the distribution of BiP, included smooth ER. Ribosome removal from rough membranes and subsequent isopycnic centrifugation resulted in a shift in the buoyant density of the ribophorin I-containing membranes. Furthermore, the rough and density-shifted fractions were the exclusive location of protein translocation activity. Based on these studies we conclude that sequestration of membrane proteins to rough domains of ER probably occurs in a like manner in yeast and mammalian cells.  相似文献   

9.
The effects of a live yeast strain of Saccharomyces cerevisiae have been investigated on zoospore germination, metabolism, and cellulolytic activity of the anaerobic rumen fungus Neocallimastix frontalis MCH3. The addition of yeast cells to a vitamin-deficient medium stimulated the germination of fungal zoospores, increased cellulose degradation and hydrogen, formate, lactate, and acetate production. Responses depended on the concentration of yeast cells added and on their viability. Yeast supplementation provided vitamins such as thiamine, which is essential for fungal growth and activity. These results demonstrate that yeasts could enhance plant cell wall colonization by N. frontalis. With certain diets, yeasts could therefore be a good tool to optimize the microbial degradation of lignocellulosic materials, but more research is needed to understand their mechanisms of action, so that they can be used with maximum efficiency as feed supplements.  相似文献   

10.
Information on the interaction between endoplasmic reticulum (ER) membranes and components of the skeletal network of the cell was gained by treating cells with the antimicrofilament agent cytochalasin B prior to cell disruption by nitrogen cavitation. Treatment of Krebs II ascites cells with cytochalasin B (5–10 μg ml?1) resulted in an increased yield of three ER membrane subfractions — heavy rough (HR), light rough (LR) and smooth (S) membranes, as judged by 3H-choline incorporation in gradient fractions following discontinuous sucrose gradient centrifugation. The major increase was observed in the HR fraction. These results indicate that the actual yield of the respective ER membrane subfractions after cell disruption is dependent on the degree of direct and/or indirect interaction between individual ER membranes and actin containing filaments of the cytoskeleton in the intact cell.  相似文献   

11.
The biocontrol yeast Pichia anomala inhibits the growth of a variety of mold species. We examined the mechanism underlying the inhibition of the grain spoilage mold Penicillium roqueforti by the biocontrol yeast P. anomala J121 during airtight storage. The biocontrol effect in a model grain silo with moist wheat (water activity of 0.96) was enhanced when complex medium, maltose, or glucose was added. Supplementation with additional nitrogen or vitamin sources did not affect the biocontrol activity of the yeast. The addition of complex medium or glucose did not significantly influence the yeast cell numbers in the silos, whether in the presence or absence of P. roqueforti. Mold growth was not influenced by the addition of nutrients, if cultivated without yeast. The products of glucose metabolism, mainly ethanol and ethyl acetate, increased after glucose addition to P. anomala-inoculated treatments. Our results suggest that neither competition for nutrients nor production of a glucose-repressible cell wall lytic enzyme is the main mode of action of biocontrol by P. anomala in this grain system. Instead, the mold-inhibiting effect probably is due to the antifungal action of metabolites, most likely a combination of ethyl acetate and ethanol, derived from glycolysis. The discovery that sugar amendments enhance the biocontrol effect of P. anomala suggests novel ways of formulating biocontrol yeasts.  相似文献   

12.
Mulyukin  A. L.  Sorokin  V. V.  Loiko  N. G.  Suzina  N. E.  Duda  V. I.  Vorob'eva  E. A.  El'-Registan  G. I. 《Microbiology》2002,71(1):31-40
X-ray microanalysis showed that vegetative cells, viable resting forms, and nonviable forms (micromummies) of the bacteria Bacillus cereus and Micrococcus luteus and the yeast Saccharomyces cerevisiae differ in the content of elements S, P, Ca, and K and Ca/K and P/S ratios. Viable resting forms (cystlike refractive cells and bacillar endospores) had more calcium and less phosphorus and potassium than vegetative cells, the difference being higher for bacilli than for micrococci and yeasts. The distinctive feature of all viable resting microbial forms was their low P/S ratios and high Ca/K ratios. The differences revealed in the cellular content and ratios of elements probably reflect changes in ionic homeostasis accompanying the transition of vegetative microbial cells to the dormant state. Relevant potassium parameters indicate that the membranes of viable resting forms retain their barrier function. At the same time, the nonviable micromummies, even those morphologically intact, of B. cereus and S. cerevisiae exhibited an anomalously low content of potassium, while those of M. luteus had an anomalously high content of this element. This suggests that the cellular membranes of micromummies lose their barrier function, which results in a free diffusion of potassium ions across the membranes. The possibility of using the elemental composition parameters for the quick analysis of the physiological state of microorganisms in natural environments is discussed.  相似文献   

13.
Visible region of an absorption spectrum was followed in cells of original strains and of rough mutants ofSaccharomyces cerevisiae andS. cerevisiae var.ellipsoideus. It was found that there are no substantial differences in relative content of cytochromesb andc in aerobically grown rough and smooth yeast forms, in spite of the fact that both forms differ substantially in the metabolic oxygen quotient. If the cytochromes present were not reduced in washed cells by dithionite or by substrate addition, the rough forms exhibited a lower cytochrome b:c ratio than the smooth forms. Under anaerobic conditions of cultivation, the rough forms retained a typical aerobic spectrum, lacking, however, the cytochromea and a3 band; the ratio of cytochromesb andc was changed in favour of cytochromeb (from the original 1.7: 1 up to 3.4: 1). The inability of the rough mutants to produce anaerobic cytochrome spectrum represented by cytochrome b1 was connected with their inability to reproduce under anaerobic conditions.  相似文献   

14.
A metabolite with antifungal activity, of non polyenic macrolide structure, was extracted and purified from the culture supernatant of a soil-isolated Streptomyces spectabilis strain, BT 352. This product was found to be related to (or being) desertomycin. Six yeast and five filamentous fungus strains were used to determine minimum concentration of the metabolite that inhibits growth by 80% (IMC); it was established at 50 micrograms/mL for the fungi and at 100 micrograms/mL or more for the yeasts tested. Short-term genotoxicity tests showed no antifungal effect on the bacterial genome, and desertomycin at concentration levels of 100 micrograms/mL or more affected protein synthesis. The antifungal metabolite had no immediate inhibiting effect upon yeast respiration, even at high concentrations; however, the respiration activity of cells grown in the presence of subinhibiting doses and collected during their growth phase was reduced by as much as 40%. Saccharomyces uvarum spheroplast regeneration in a liquid medium containing desertomycin was inhibited at doses fivefold weaker than the IMC determined with intact cells. Contrary to amphotericin B, desertomycin subinhibiting doses do not modify, and if so lightly, the yeast latent phase or the spheroplast wall regeneration phase, thus indicating a fungicidal action. Moreover, following a 30-min contact with desertomycin subinhibiting and inhibiting doses, yeasts liberated potassium in large amounts, indicating that plasma membranes were affected.  相似文献   

15.
The lytic effect of non-ionogenic surface active compounds (SAC), based on polyoxyethylated fatty acids and alkylphenols on the yeast protoplast cytoplasmic membranes and the extracting ability of the SAC with respect to intracellular proteins of intact yeast cells, were studied. It was shown that the lytic activity of the SAC under study depends on the overall effect of the size of their hydrophobic and hydrophylic fragments rather than on the level of the hydrophylic-lypolytic equilibrium of SAC. The absence of correlation between the lytic activity and the extracting ability of SAC is accounted for by the differences in the mechanisms of membrane degradation under the action of SAC on the protoplasts and intact cells. The data obtained support the previously made assumption that the correlation between the size of SAC mycelles and that of the cell wall pores is the limiting factor of the SAC induced protein extraction from the intact cells.  相似文献   

16.
Aim: Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Methods and Results: Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small‐scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1 : 2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l?1 (0·22 mol l?1)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1 : 5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1 : 10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0·42 ± 0·01 g ethanol (g glucose)?1 were observed for both yeasts in 1 : 10 hydrolysate. In small‐scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1 : 5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1 : 2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Conclusions: Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. Significance and Impact of the study: This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates.  相似文献   

17.
Summary Cultures of mouse plasmacytoma cells (MPC-11) grown within the range 6–23 × 105 cells/ml showed considerable variation in cell cycle distribution profiles and also differences with regard to relative amounts of microsomal subfractions. The variability of appearance of heavy rough (HR) and light rough (LR) microsomal subfractions was not merely due to differences in nutritional state of the culture. Cultures containing a high S/G2 + M cell cycle distribution ratio showed a high content of HR microsomal membranes; as the S/G2 + M ratio decreased, so too decreased the amount of HR material whilst the amount of LR microsomal membranes increased. The results indicate that there is a direct correlation between phase of cell cycle and both amount and relative distribution of rough microsomal membranes, the smooth fraction (S), however, remains relatively unchanged.  相似文献   

18.
In the yeast Dipodascus magnusii, which is auxotrophic for thiamine and biotin, during cultivation on glucose with excessive thiamine concentration, pyruvate metabolism was shown to result in the synthesis of fermentation products, namely, ethanol and, to a lesser extent, lactate. Substantial synthesis of ethyl acetate was also observed under these conditions. Introduction of nicotinic acid (NA) into the medium resulted in time separation of ethanol and lactate production. It was shown that cultivation of the yeast under biotin deficiency resulted in nearly complete suppression of aerobic production of ethanol and cessation of ethyl acetate synthesis, whereas lactate synthesis was activated as early as in the first hours of cultivation. Upon introduction of NA under these conditions, lactate concentration sharply increased. These results show that the combination of thiamine and biotin with other vitamins can stimulate utilization of the pyruvate pool in yeasts towards formation of considerable amounts of lactate, which is typical only of cells of higher eukaryotes and bacteria.  相似文献   

19.
One of the most striking features of alkane-grown yeast cells is conspicuous appearance of peroxisomes in harmony with a high level of catalase. This unique phenomenon was first demonstrated in the authors′ laboratory, and the metabolic functions of peroxisomes in yeasts utilizing alkanes has been estabilished with intact peroxisomes isolated by density gradient centrifugation. The organelles participate in the degradation of fatty acids derived from alkanes to C2-units and the synthesis of gluconeogenic intermediates from C2-units. The abundant appearance of peroxisomes in alkane-utilizing cells has allowed successful production of several useful enzymes including catalase, D-amino acid oxidase, uricase, acyl-CoA oxidase etc. Yeast cells will be an excellent system for investigation the functions and development of peroxisomes because biogenesis of the organelles is induced only by transferring the cells into alkane medium from glucose or ethanol medium.  相似文献   

20.
We studied the effect of quinocitrinines on the respiratory activity of yeasts (Yarrowia lipolytica) and bacteria (Arthrobacter globiformis). Quinocitrinines were shown to activate respiration of native cells in both types of organisms. Studies of yeast mitochondria showed that quinocitrinine exerts an uncoupling effect on oxidative phosphorylation, which activates the respiration, reduces the respiratory control, and decreases the ADP/O ratio. Experiments with intact mitochondria and native cells of Arthrobacter globiformis revealed that quinocitrinine decreases the membrane potential. The uncoupling effect likely constitutes a mechanism of the antibiotic activity of quinocitrinines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号