首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V pojednání je diskutována na základě výzkumu chloralyzovaných ko?en? bobu (Vicia faba) vzájemná interakce mezi diploidními a polyploidními buňkami a tkáněmi a jsou popsány konkrétní p?íklady. Ve zcela mladých ko?enech vyvíjejí se mixoploidní tkáně p?átelsky vedle sebe, normálně se dělí a diferencují. Ale později, zvlá?tě kdy? ko?enové vrcholy obsahují vysoce polyploidní tkáně (8 n, 16 n), chovají se tyto tkáně k sobě nep?átelsky. Polyploidní sektory jsou oddělovány a p?ed?asně zastavují své dělení jako? i prodlu?ovací r?st. Dochází k napětí pletiv a v polyploidních sektorech dochází někdy ke vzniku rhexigenních dutin. Tyto pochody, vyjma vznik rhexigenních dutin, jsou ji? v základním meristému p?ipravovány a dochází k p?eru?ení normální korelace mezi tkáněmi r?zné ploidie. K homoploidizaci m??e také p?ispět redukce po?tu chromozóm? multipolární mitózou v polyploidních buňkách. R?zně vysoce ploidní tkáně mohou od sebe být odděleny metakutinizovanými nebo zrosolovatělými hrani?ními blanami buně?nými. Bě?í tu o r?zné autoregula?ní pochody, které vedou k diploidizaci, ?id?eji k úplné polyploidizaci. Těmito zp?soby jsou star?í homoploidizovány.  相似文献   

2.
Některé mixoploidní ko?eny bob? (Vicia faba), získané ú?inkem chloralhydrátu, se dichotomicky větví. Výzkumem ko?enových vrchol? se objevilo, ?e dichotomie se děje v ko?enech, které obsahují v mediáně svého transverzálního meristému pruh nebo provazec polyploidních buněk. Po obou jeho stranách se organizují nové iniciály obou ko?enových vrchol?. Poněvad? mohou v mixoploidních vrcholech polyploidní buňky p?sobit v meristému jako cizí stavební elementy, lze tuto dichotomii vylo?it jako následek p?eru?ení nebo poru?ení korelace mezi iniciálami p?vodního ko?enu. Tato porucha korelace je podobná p?eru?ení korelace zp?sobené vedením mediáního zá?ezu do meristému ko?enového vrcholu. V některých dichotomicky se větvících ko?enech (v tzv. korálovitých ko?enech rostlin cykasovitých) a v baktériových hlízách druhuElaeagnus argentea byly sice nalezeny velké buňky v mediáně le?ící, ty v?ak, soudě podle velikosti jader, nebyly polyploidní. Nele?í-li polyploidní buňky v mediáně transverzálního meristému, m??e se ko?enový vrchol roz?těpit ve dvě nestejně silné ?ásti, z nich? jedna roste dále, druhá slab?í v?ak sv?j r?st d?íve nebo později zastaví.  相似文献   

3.
V práci byl sledován vliv p?edplodin lnu, ?ita, máku a ho??ice na následné plodiny tého? nebo jiného druhu p?i bezprost?edním vysévání po sobě a p?i vysévání v r?zně dlouhých ?asových intervalech s odstupňovanou délkou odpo?ívání zeminy. Pokusy byly prováděny v nádobách naplněných kompostovou zeminou, které byly umístěny na pokusné zahradě. Byl hodnocen r?st p?edplodiny a následné plodiny stanovením su?iny nadzemních ?ástí a ko?en?. Během r?stu následných rostlin byly odebírány vzorky zemin, v nich? byl stanoven obsah fyziologicky p?istupného dusíku, fostoru a draslíku. V?echny ?ty?i pou?ité p?edplodiny p?sobily pr?kazné změny v r?stu následných rostlin. Len a mák pěstované jako p?edplodiny p?sobily na následné rostliny lnu a cukrovky prost?ednictvím p?dních autopatických ?i allelopatických faktor?. Ú?inek ?ita jako p?edplodiny na ?ito a ho??ice na je?men byl méně výrazný. Z výsledk? se nedá v posledních dvou p?ípadech p?ímo usuzovat na p?ítomnost autopatických nebo allelopatických faktor?. P?i bezprost?ední kultivaci následných rostlin v zemině po p?edplodině bez odpo?ívání byla zji?těna jen inhibice r?stu. Pokusy s odstupňovanou délkou odpo?ívání zeminy dávají mo?nost zachytit celou ?kálu r?stových změn následných rostlin od inhibice ke stimulaci. Ú?inek p?edplodiny na následnou plodinu se zna?ně měnil s délkou odpo?ívání zeminy po p?edplodině. Změny r?stu následných rostlin nekorelovaly—kromě pokusu s ?item a ?áste?ně s ho??icí—se změnami v obsahu sledovaných ?ivin, ani s mno?stvím narostlé p?edplodiny.  相似文献   

4.
K-humát stimuloval r?st p?enice a byla zji?těna zvý?ená aktivita fosfatázy v listech i v ko?enech a zvý?ená aktivita katalázy pouze v ko?enech. Vy??í teplota (30° C) p?i kultivaci zp?sobila pokles aktivity fosfatázy v ko?enech i v listech a pokles aktivity katalázy v listech. Narkotizace klí?ních rostlinek chloroformem zpomaluje r?st, zvy?uje aktivitu fosfatázy jen v prvních dnech po zásahu a zvy?uje aktivitu katalázy. Rovně? odnětí endospermu mělo za následek zpomalený r?st. P?enice takto vypěstovaná měla zvý?enou aktivitu katalázy a fosfatázy. Aktivita fosfatázy v listech v?ech variant i kontrol byla podstatně ni??í ne? v ko?enech na rozdíl od katalázy, která byla v listech a? několikanásobně aktivněj?í ne? v ko?enech. Aktivita fosfatázy v listech i v ko?enech klesala ve vét?ině p?ípad? se stá?ím. Aktivita katalázy klesala se stá?ím pouze v ko?enech, zatím co v listech stoupala. Aktivita katalázy je pravděpodobně méně závislá na rychlosti r?stu a souvisí spí?e s vý?ivou, tvorbou chlorofylu, fotosyntetickou aktivitou apod. Jak z literárních údaj?, tak z na?ich výsledk? vyplývá, ?e neexístuje jednoduchý vztah mezi aktivitou sledovaných enzym? a rychlostí r?stu; jde o vztahy komplikovaněj?í.  相似文献   

5.
Natriumfluorid, monojodacetát a malonát brzdí, pop?ípadě stimulují, dýchání ko?en? p?enice pěstované 2 a? 10 dní v roztoku humátu sodného (100 mg/l) silněji, ne? dýchání ko?en? rostlin pěstovaných ve vodě. Obdobně p?sobí natriumfluorid na dýchání list?. Poměr radioaktivit C14O2 uvolněného z glukosy zna?ené v poloze 1 nebo 6 (C6/C1) je pr?kazně zvý?en u ko?en?, nikoli v?ak u list?. Změna tohoto poměru je doprovázena zmen?ením celkové radioaktivity C14O2 uvolněného ko?eny rostlin ovlivněnými humátem z glukesy specificky i totálně zna?ené. Endogenní respirace (QO2) ko?en? je p?sobením humátu zesílena o 5–30 %, intensita respirace list? z?stává na stejné úrovni. R?st ko?en? do délky je v prost?edí s humátem intensivněj?í o 20–80 %, r?st list? o 5–15%. Uvedená zji?tění vedou k závěru, ?e v ko?enech rostlin pěstovaných v roztoku humátu vzr?stá podíl glykolysy v respira?ním metabolismu.  相似文献   

6.
P?i studiu vlivu sní?ení p?dní vlhkosti na osmotické poměry v buně?né ?távě bramborových rostlin byla také hodnocena refraktometrická metoda pro ur?ování osmotických hodnot v nich. Ukázalo se, ?e je pot?eba zna?né opatrnosti p?i její aplikaci u brambor?. Elektrolyty, které jsou refraktometrickou metodou posti?eny poměrně málo citlivě, mají podstatnou p?evahu p?i vytvá?ení celkových osmotických hodnot v buně?né ?távě brambor? nad druhou hlavní slo?kou, látkami, které redukují Fehling?v roztok. Elektrolyty mají ?asto také protich?dný vegeta?ní trend proti molekulárně rozpu?těným látkám, redukujícím Fehling?v roztok. Proto se mění korelace mezi celkovými osmotickými hodnotami a světlolomností ?távy nejen v jednotlivých p?ípadech, ale také během vegetace. Tyto poměry jsou rozdílné také v jednotlivých orgánech bramborových rostlin. Zna?né sní?ení p?dní vlhkosti, at trvalé, nebo do?asné, vyvolalo poměrně malé zvý?ení celkových osmotických hodnot ve srovnání s ru?ivými vlivy změn po?así. Z výsledk?, získaných v této práci, vyplývá, ?e refraktometrická metoda není dostate?ně citlivá, aby jí bylo mo?no spolehlivě stanovit vliv p?dní vlhkosti na osmotické poměry v bramborových rostlinách za neklimatizovaných podmínek.  相似文献   

7.
Byla studována transpirace listových ?epelí zavla?ovaných a nezavla?ovaných rostlin jarní p?enice v závislosti k obsahu a k r?stovým změnám pokusných rostlin v pr?běhu jejich vývoje. Pou?ité závlahy stimulovaly r?st a nepatrně zpomalily vývoj pokusných rostlin. Zvy?ovaly v rostlinném těle p?edev?ím obsah vody a méně ji? su?inu. Kvantitativní a kvalitativní vlastnosti obsahu vody v rostlině ovlivňovaly nejen transpiraci, nýbr? i vznik nových a odumírání starých orgán? a tkání, p?edev?ím ?epelí listových. Transpirace u zavla?ovaných rostlin byla výrazné vy??í ne? u rostlin nezavla?ovaných. Pr?měrné hodnoty transpirace u jednotlivých ?epelí listových byly z?etolně odli?né a pro ka?dou ?epel listovou charakteristické. Z hlediska statického bylo mo?no některé vztahy a heterogenitu jednotlivých ?epelí listových na tém?e stéblu vyjád?it a v podstatě i vysvětlit “Zalenského zákonem”. Týkalo se to zejména pr?měrných hodnot r?stových charakteristik a studovaných rys? vodního provozu. Naproti tomu z hlediska dynamického bylo mo?no jednotlivé ?epele listové rozdělit podle změn transpirace do dvou skupin. Do prvé skupiny pat?í ?epel prvého a? t?etího listu, do druhé skupiny pak ?epel ?tvrtého a? ?estého listu a klas. Regula?ní schopnosti jednotlivých ?epelí listových v hospoda?ení s vodou vynikají v období odno?ování, sloupkování a mlé?né zralosti. V těchto vývojových fázích byla vysvětlena také nápadná sní?ení transpirace rostlin, která jsou zp?sobena v prvé ?adě vnit?ními a nikoliv jen vněj?ími faktory.  相似文献   

8.
Ve fotoperiodických pokusech s jarní p?enicí Niva jsme sledovali pr?běh fotoperiodické citlivosti a umístění období fotoperiodieké reakce v ontogenesi rostlin. Nepoda?ilo se nám u této dlouhodenní rostliny najít takové období, během něho? by zkrácený den v?bec neměl vliv na rychlost vývoje. Některé údaje v?ak nazna?ují, ?e m??eme vymezit období zvý?ené fotoperiodieké citlivosti, které by odpovídalo období fotoperiodieké reakce u krátkodenních rostlin. Výsledky nasvěd?ují rovně? tomu, ?e toto období nekon?í náhle, nýbr? postupně p?echází v následující období, kdy délka dne p?sobí na rychlost vývoje ji? jen prost?ednietvím fotosynthesy. Tento vliv je dob?e; patrný p?i pou?ití takových indikátor? jako je vývoj vzrostného vrcholu a metání. Existenci p?echodného období na konci období zvý?ené fotoperiodieké citlivosti a jeho souvislosti s fází vzrostného vrcholu od zakládání klísk? do zakládání ty?inek je t?eba ově?it dlouhodobím pokusem v p?ísně regulovatelních podmínkách. Z metodik sledování pr?běhu fotoperiodieké citlivosti se u na?eho pokusného materiálu nejlépe osvěd?ilo metání, které poskytlo k?ivky s ur?itými, více nebo méně z?etelnými zloniy, a také sledování abnormit (p?i klasickém uspo?ádání pokusu), které indikují naru?ení vztahu mezi r?stem a vývojem. Orienta?ní údaje poskytlo rovně? mě?ení délky rostlin u klasického uspo?ádáni pokusu. Nejméně spolehlivé byly v na?ich pokusech analysy vývojového stavu vzrostného vrcholu.  相似文献   

9.
Predlo?ená práce sleduje vzájemný vztah mezi ?item a konopím ve vodní kultu?e p?i konstantní minerální vý?ivě. Po 24 dnech kultivace nebyly nalezeny pr?kazné rozdíly v r?stu rostlin kontrolních a ze směsi. Pr?kazné rozdíly byly v?ak zji?těny v sorpci iont? H2PO4, p?i?em? byl pou?it radioisotop32P. Ovlivněna byla i spot?eba vody u rostlin ve směsi. Zji?těné rozdíly jsou vysvětlovány vlivem specifických látek v ko?enových výmě?cích zú?astněných rostlin.  相似文献   

10.
Dekapitované klíění rostliny lnu a hrachu, nat?ené pastou s trijodbenzoovou kyselinou bud nad dělohami nebo pod nimi, jeví zvlá?tě na epikotylních pahýlech rozdílné morfogenetické změny v souvislosti, s rozdílnými korela?ními vlivy jejich epigeických, resp. hypogeických děloh, je? primárně rozhodují o rozdílné dominanci jejich pupenových základ?. V nejraněj?ím období klí?ení lze prvního internodia lnu, oby?ejně velmi krátkého, a ?apík? děloh hrachu u?ít k d?kazu antagonismu mezi kyselinou trijodbenzoovou a indolyloctovou. První internodium lnu se prodlou?ilo p?sobením trijodbenzoové kyseliny na semena, i kdy? zrála na rostlině, a ?apíky děloh hrachu, zadr?ené v r?stu má?ením semen v roztoku kyseliny trijodbenzoové, se zvět?ily p?sobením kyseliny indolyloctové zvněj?ku. Tato kyselina naopak ru?í morfogenetické ú?inky trijodbenzoové kyseliny na semena lnu.  相似文献   

11.
P?i pěstování rostlin kuku?ice ve sterilních kulturách je t?eba obilky desinfi-kovat, aby se zniěily zárodky mikroorganism?. To sni?uje jejich klí?ivost, zpozdí r?st a tvorbu chlorofylu během prvních několika týdn? vyvoje klí?ních rost-linek. Nejde o specfflcké inhibice, nýbr? o vývojové opo?dění neprojevující se ani v poměru dlou?ivého r?stu a hromadění su?iny. Opo?dění je nejvě t?í p?i po-u?ití roztoku sublimáta nebo ethanolu. Vhodněj?í je desinfekce roztokem chlor-aminu. Změny vyvolané t?íhodinovým namá?ením jsou vyrovnány během cca 3 tydn?, bězně u?ívaná sedmihodinová desinfekce vyvolává kromě silného sní-zeni klí?ivosti (témě? ? 50 %) déle trvající, av?ak nezásadní změny. Chloramin neovlivnil tvorbu pohlavních organ?, intensità fotosynthesy byla úměrná mno?ství chlorofylu. Desinfekce chloraminem lze tedy u?ít, ani? by se rostliny podstatně li?ily od těch, které byly vypěstovány ze suchých obilek.  相似文献   

12.
Chloralizujeme-li klíoní koren bobu (Vicia jaba L.) nekolikrát po sobě, vznikne v zevní vrstvě pleromu a ve vnitrní periblemu mnoho polyploidních buněk, které tvoíí nepravidelnou mozaiku, z ní? vznikne transverzální meristem postranních mixoploidních koren?. Na vzniku ka?dé z nich ú?astní se nékolik, pr?měrně asi 30 buněk, a jejich ?inností probíhá ko?enem vedle diploidních. je?tě několik polyploidních provazcú nebo sektor?. Iniciály postranních ko?en? mohou p?sobit dvoustranně jako kambium nebo jednostranně, oddělujíce buňky bud jen pro ?epi?ku nebo jen pro vlastní ko?en. Na zalo?ení postranních ko?enú se v chlorali-zovaných hlavních ko?enech m??e ú?astnit několik vrstev buně?n?ch. Během vývoje mixoploidních ko?en? m??e být některá vrstva iniciál nahrazena vrstvou s ný sousedícý, ?ím? m??e být zastaven práb?h núkterého provazce nebo sektoru ve vrcholu ko?enovém. Diploidní a mixoploidní tkáň m??e se jevit na p?ícném pr?rezu ko?enem velmi nepravidelně rozdělenou. P?esto mohou mít mixoploidní ko?eny zevní tvar v celku normální, nepravidelnosti vznikají vylu?ováním polyploidních ?eber z dal?ího vývoje ko?en? nebo u plomen eutelických a amorfních. V ko?enech, v nich? jsou polyploidní buňky v men?ině, p?sobí jako cizí elementy a jsou pozvolna rozmanitým zp?sobem z dal?iho vývoje vrcholu vylucovány. V ko? enu se děje jaké si samo?istě ní, které m? The current version does not support copying Cyrillic text to the Clipboard. je v?ak pravdě podobno, ?e ve vrcholech, které se skládají z velké vě t?iny buněk polyploidních, m??e probíhat pochod opa?ný vedoucí k úplné jejich polyploidisaci.  相似文献   

13.
V p?edlo?ené práci je sledován ú?inek humusových látek aplikovaných na listy cukrovky post?ikem. Sou?asně je ově?ována vhodnost kombinace humusových látek s minerálními ?ivinami. Ukazuje se, ?e post?ik humusovými látkami zvlá?tě v kombinaci s minerálními ?ivinami p?íznivě ovlivňuje r?st cukrovky, zvy?uje váhu list? i ko?ene a celkové mno?ství cukru v ko?eni. Ú?inok post?iku humusovými látkami je vět?í u rostlin pěstovaných ve vodní kultu?e a st?íkaných ?ivným roztokem s kompletněj?ím zastoupením minerálních prvk?. Humusové látky p?i aplikaci na list vyvolávají podobné změny v anatomické stavbě pletiv a orgán?, jako p?i jejich aplikaci do ?ivného roztoku ke ko?en?m. Humusové látky zvlá?tě v kombinaci s minerálním roztokem zvy?ují v listech cukrovky mno?ství chlorofylu a zvy?ují intezitu fotosyntézy. Post?ik humusovými látkami zvy?uje sou?asně transpiraci cukrovky.  相似文献   

14.
V listech p?enice, pěstované 4 a? 10 dní v roztoku kys. giberelové (10–20 p.p.m.) bylo chromatografickou analysou zji?têno zvý?ení hladiny fruktoso-1,6-difosfátu v poměru ke kyselině 3-fosfoglycerové a fosfoenolpyrohroznové a kyseliny 3-fosfo-glycerové v poměru k dosud neidentifikovanému fosfátu. Tyto změny byly nalezeny za r?zných světelných re?im?, je? p?edcházely extrakci fosfát? z list?. Na základě těchto údaj? byl se z?etelem k výsledk?m d?ívěj?ích pokus? (Lu?tinec, Pokorná aR??i?ka 1962) vysloven p?edpoklad o interakei mezi glykolysou a reakcemi spot?ebovávajícími její meziprodukty pro synthesu lipid? jako?to o zp?sobu, kterým se m??e měnit p?sobením kyseliny giberelové hladina analysovaných fosfát? v listech. Za ú?elem ově?ení jeho správnosti byla sledována inkorporace 1-14C- a 6-14C-glukosy do lipid?, fosfolipid? (jejich? ho?e?natá s?l je nerozpustná v acetonu), CO2 a nelipidické frakce list?. Ukázalo se, ?e inkorporace 1-14C do lipidických frakcí rostlin pěstovaných 3 a? 7 dní v roztoku kys. giberelové je nápadně sní?ena ve srovnání s inkorporací 6-14C. Poměr radioaktivit C6∶C1 byl v lipidech zna?ně zvý?en, také t?íhodinovým p?sobením kyseliny giberelové (10 a 50 p.p.m.) na listy p?i jejich inkubaci s glukosou-14C. Vzhledem k tomu, ?e mno?ství látek extrahovatelných etherem je v listech pokusných rostlin stejné jako u kontroly a ?e inkorporace 1-C do lipid? je v ?adě p?ípad? u kontrolních rostlin zna?ně vy??í ne? inkorporace 6-C, je nutno uva?ovat o ú?inku kyseliny giberelové na rychlost výměny uhlíkových atom? mezi lipidy a produkty katabolismu glukosy.  相似文献   

15.
U 14 odr?d ozimé p?enice byl mě?en index lomu buně?né ?t'ávy v období zima—jaro. Nejvy??í hodnoty byly nalezeny u některých mrazuvzdorných odr?d a nejni??í u neodolných odr?d, ale index lomu buně?né ?t'ávy nebyl ve v?ech p?ípadech úměrný mrazuvzdornosti odr?dy. Vzhledem k metabolickým změnám, které ur?ují mno?ství a poměr osmoticky aktivních látek v rostlině, nejsou sezónní a denní změny indexu lomu buně?né ?t'ávy během zimy a jara závislé pouze na okolní teplotě a vlhkosti. Index lomu se mění r?zně podle vý?ivy rostlin v r?zných obdobích r?stu u odr?d s r?zným biologickým charakterem a za r?zných pedologických a klimatických podmínek. Hnojení dusíkem zvy?uje index lomu buně?né ?t'ávy u mnoha odr?d, hlavně v zimě.  相似文献   

16.
Byly zji??ovány změny osmotického potenciálu (osmotického tlaku) buně?né ??ávy (vylisované z listových pletiv usmrcených p?i 100°C) p?i pasivní vodní bilanci (vadnutí) ?ástí ?epele v závislosti na zvět?ujícím se vodním deficitu (na ztrátě vody). Teoreticky by toti? bylo mo?no p?edpokládat, ?e voda vydaná p?i pasivní vodní bilanci pochází rovnoměrně z ve?keré vody buně?né, tedy také poměrně z podílu, obsa?eného v buně?né ??ávě. V tom p?ípadě by se buně?ná ??áva koncentrovala úměrně vznikajícímu deficitu. V naprosté vět?ině pozorovaných p?ípad? stoupal v?ak osmotický tlak (klesal osmotický potenciál) strměji ne? teoreticky odpovídá sou?asné ztrátě vody. Ze zji?těných rozdíl? mezi zmíněným teoretickým pr?během a mezi nalezenými hodmotami byl vypo?ítán odhad percentuálního podílu ?mobilní” vody v buňce, tj. toho podílu, kterého se v?dy bezprost?edně týkají změny obsahu vody v buňce. Tento podíl ?mobilní” vody byl u dospělých list? kolem 70 a? 80%. Velikost podílu ?mobilní” vody závisela na rychlosti vzniku vodního deficitu: P?i rychlém vadnutí byl u dospělých list? zji?těn men?í podíl ne? p?i vadnutí pomalém. To svěděí o tom, ?e ?mobilní” podíl buně?né vody je vymezován podle vodní bilance buňky dynamickou rovnováhu intracelulárních difusních proud? vody podle gradient? difusního tlaku vody mezi jednotlivými podíly buně?né vody, je? jsou ur?eny r?znou vazbou (?vázaná” voda) i r?znou lokalisací v buňce.  相似文献   

17.
V období ?esti let byly zkoumány vzájemné opylovací poměry i schopnost samosprásění u sedmi významněj?ích kultivar? vi?ní (Cerasus vulgaris Mill.), pěstovaných v ?eskoslovensku. Úspě?nost opylení byla posuzována podle procenta uzrálých plod?. Celkový p?ehled výsledk? podává Tabulka I. Mezi dvěma kultivary (De Olivet a Bruselská hnědá) zji?těna reciproká inkompatibilita. Stanovena tak první inkompatibilitní skupina u vi?ní. V ostatních p?ípadech jde o kombinace v r?zném stupni kompatibilní. Podle celkové úrodnosti a podle opylovací schopnosti sestaveny studované sorty v po?adí, uvedené v tabulce 2. U dvou kultivar? (Körö?ská a Bruselská hnědá) zji?těna naprostá autosterilita, naopak u dvou druhých (Moreillská a Vítova) nalezen vysoký stupeň samospra?nosti. Tyto dvě sorty skýtají rovně? p?i vzájemném opylení vynikající výsledky. Zbývající t?í sorty (De Olivet, Vackova a Ostheimská) jsou jen velmi slabě samospra?né a pot?ebují dobré opylova?e pro zaji?tění úrody.  相似文献   

18.
Úkolem tohoto výzkumu bylo objasnění fysiologické p?í?iny intensivněj?í vý-měny látek a r?stu o?ezaných ker?Rhus aromatica L. Stanovení obsahu r?zných forem dusíkatých slou?enin, cukr?, organických kyselin, fosfora a su?iny list? o?ezanýeh a kontrolních rostlin v r?zné době během 24 hod., bylo zji?těno, ?e kladný vliv o?ezávání na rostlmy je zp?soben zvýsením amplitudy jak synthesy a transporta organickyeh látek z list?, tak také transportu minerálních prvk? a vody do list?.  相似文献   

19.
Auto?i sledovali infra?ervenými analyzátory CO2 a H2O ?istou fotosyntézu, dýchání a transpiraci rostlin a list? kuku?ice v konstantních podmínkách. Mezi t?emi sledovanými odr?dami—Schindelmeiser, Siloma a VIR 25—nebyly zji?těny pr?kazné rozdíly v ?isté fotosyntéze, i kdy? se jednotlivé odr?dy díky r?zně dlouhé vegeta?ní době zretelně li?í ve výnosu; rozptyl hodnot mezi jednotlivými rostlinami jedné odr?dy byl p?ibli?ně 25%. P?i témě? stejně velkém rozptylu mezi rostlinami jedné odr?dy byla zji?těna pr?kazně vy?? intenzita transpirace u VIR 25 ve srovnánís ostatními dvěma odr?dami. Nejvy??í intenzitu ?isté fotosyntézy měly listy nejblí?e od palice (tj. 4. a? 5. list). P?íjem CO2 vyjád?ený na plochu a hodinu byl r?zný u r?zných úsek? listu; ve st?ední ?ásti listu byl pr?kazně vy??í ve srovnání s bazální ?ástí. P?íjem CO2 byl v pozitivní korelacis minerální vý?ivou. Nebyly zji?těny rozdíly v p?íjmu CO2 u rostlin bez palic as nimi. Rostliny bez palic nemohou produkované asimiláty (sacharózu) skladovat; ty proto zaplavují celou rostlinu az velké ?ásti se v noci prodýchávají. Efektivní výtě?ek su?iny u těchto rostlin bez palic dosahuje jen 70% výtě?ku rostlin s palicemi.  相似文献   

20.
Nalézají-li se polyploidní buně?né provazce nebo sektory na periférii ko?enového vrcholu, mohou jejich iniciály zastavit své dal?í dělení a polyploidní tkáň m? ? ezrosolovatěním a rozpu?těním hrani?ních blan být od vrcholu odlou?ena. Je to pochod chorize, který je obdobný odlupování buně?ných vrstev postranní ko?enové ?epi?ky. V mixoploidních vrcholech jsou odlu?ovány polyploidní provazce nebo sektory, které jenom někdy obsahují té? několik vtrou?ených ?ad diploidních buněk. Tento odlu?ovací pochod m??e p?ispět podstatně diploidizaei mixoploidních ko?enových vrchol?. Méně ?asto m??e vrchol obsahující vět?inu polyploidních buněk, zvlá?tě kdy? zaujímají plerom, odlou?it periferní diploidní buně?né vrstvy, ?ím? se m??e stát ?isté polyploidním. I v p?írodě m??e takovým pochod?m docházet, nebo? vněj?í ?initelé snadno mohou v ko?enech vyvolat vznik polyploidních buněk. Polyploidní buňky p?sobí -nejspí?e hmotně - jako cizí elementy na zápoj v buňkách diploidních.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号