首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloralisujeme-li klí?ní ko?eny bobu (Vicia faba) a zkoumáme-li později postranní ko?eny, které v jejich chloralisovaných zónách vznikly, shledáme, ?e jsou v?echny v r?zném stupni mixoploidní. Po pětinásobné chloralisaci obsahovaly polyploidních buněk nej?astěji asi do jedné t?etiny, jsou v?ak také vrcholy obsahující a? ?ty?i pětiny polyploidních buněk. Buňky ko?enových vrchol? bob? snesou vlivem chloralisace zvý?ení po?tu chromosom? jen asi na 32n; takové buňky se mohou je?tě několikráte dělit, ale d?íve nebo později odumírají. Restituce mixoploidních ko?en?, at po dekapitaci nebo po podélném na?íznutí vrchol? se děje normálné a ú?astní se na ní harmonicky diploidní a polyploidní buňky. Nebylo pozorováno, ?e by snad byly polyploidní buňky z restitu?ního pochodu vylu?ovány nebo ?e by bylo do?lo k nepravidelným bujením. Mixoploidní vrchol se chová p?i restituci jako celistvý, jednotný, ?ivý ústroj.  相似文献   

2.
Některé mixoploidní ko?eny bob? (Vicia faba), získané ú?inkem chloralhydrátu, se dichotomicky větví. Výzkumem ko?enových vrchol? se objevilo, ?e dichotomie se děje v ko?enech, které obsahují v mediáně svého transverzálního meristému pruh nebo provazec polyploidních buněk. Po obou jeho stranách se organizují nové iniciály obou ko?enových vrchol?. Poněvad? mohou v mixoploidních vrcholech polyploidní buňky p?sobit v meristému jako cizí stavební elementy, lze tuto dichotomii vylo?it jako následek p?eru?ení nebo poru?ení korelace mezi iniciálami p?vodního ko?enu. Tato porucha korelace je podobná p?eru?ení korelace zp?sobené vedením mediáního zá?ezu do meristému ko?enového vrcholu. V některých dichotomicky se větvících ko?enech (v tzv. korálovitých ko?enech rostlin cykasovitých) a v baktériových hlízách druhuElaeagnus argentea byly sice nalezeny velké buňky v mediáně le?ící, ty v?ak, soudě podle velikosti jader, nebyly polyploidní. Nele?í-li polyploidní buňky v mediáně transverzálního meristému, m??e se ko?enový vrchol roz?těpit ve dvě nestejně silné ?ásti, z nich? jedna roste dále, druhá slab?í v?ak sv?j r?st d?íve nebo později zastaví.  相似文献   

3.
V klí?ních ko?enech kultivaru fazoluPhaseolus vulgaris nanus jsou ve vrcholu buňky uspo?ádány ve skupinách, vět?inou po ?ty?ech nebo osmí buňkách, které pocházejí od jedné vrcholovým meristémem oddělené buňky mate?ské. Skupiny jsou obklopeny z?etelně tlust?ími blanami, ne? jsou blány oddělující buňky uvnit? jednotlivých skupin. Тoto uspo?ádání v oddělené skupiny potvrzuje nález WAGNERA (1937), ?e ka?dá buňka vrcholového meristému od doby svého vzniku pro?ije jenom malý a ?asto stálý po?et děleni. Dce?inné buňky jedné mate?ské buňky jsou z?etelně od ostatních skupin odděleny a poukazují k tomu, ?e se p?vodní buňka dělila dvakrát, t?ikrat, nejvý?e ?ty?ikrát. Mimoto jsou tyto podélné skupiny buněk uspo?ádány v p?i?né ter?ovité skupiny, co? svěd?í pro výklad, ?e p?vodní meristematické buňky vznikají rytmicky po sobě. Nedělí se v?ak simultánně. Мitózy byly v některých ko?enech nalezeny i ve vlastním centru vrcholového meristému ko?en?, ve kterém se podle CLOWESA buňky v?bec nedělí, jak se také autor této práce v r. 1897 domníval.  相似文献   

4.
Modelové zachycení r?stových porměr? u vy??ích rostlin p?edpokládá mo?nost ozna?ení celého pletiva odvozeného z jedné ur?ité buňky. Za takové ozna?ení lze pova?ovat nap?. ?odmí?ení” (Entmischung) heterogenních plastid? z jedné buňky, polyploidizaci jednotlivých buněk a z nich' odvozených pletiv, stejně jako indukei mutací nap?. pomocí Roentgenova zá?ení. Jestli?e v posledně uvedeném p?ípadě mutuje, ?ekněme, jedna iniciála L II, pak vykazuje ur?itá ?ást sporogenních pletiv tuté? mutaci Za p?edpokladu, ?e neprobíhá eliminace buněk, odpovídá tato ?ást v pr?měru poměru mutované iniciály L H k po?tu zbylých iniciál L II, uplatňujících se na dal?ím vývoji. Model, odvozený z této skute?nosti a z dal?ích p?edpoklad?, uvedených v textu této práce, podává p?edev?im informaci o o?ekávané ?etnosti mutací a ?těpných poměrech v samosprá?eném potomstvu mutovaných rostlin. Ze srovnání se zji?těnými daty vyplývá, ?e pro vyjád?ení těchto poměr? u odno?í je?mene vysta?í relativně jednoduchý model. Jeho základem je p?edpoklad, ?e iniciály p?e?ívají jedna na druhé stochasticky nezávisle a náhodně, a zároveň náhodně mutují. P?itom není nutno u zkoumaných postranních odno?í uva?ovat eliminaci p?vodních iniciál. U hrachu jsou tyto poměry komplikovaněj?í jak ve vztahu k rozdělení ?etnosti mutací, tak ve vztabu k ?těpným poměr?m. Dosud je známe pouze obecně pro celé rostliny tohoto druhu nikoliv v?ak pro jednotlivá květenství. K jejich objasnění je t?eba p?edpokládat, ?e během r?stu probíhá na ur?itých místech eliminace jednotlivých buněk, zodpovědných za tvorbu sporogenních pletiv. Výzkum na tomto modelu není v?ak dosud ukon?en.  相似文献   

5.
R?st pylových lá?ek vyvolává ve ?nělce změny v hladině volnýeh aminokyselin. To bylo prokázáno u alaninu, valinu, leucinu — isoleucinu, serinu, threoninu, kyseliny γ-aminomáselné, asparaginu, kyseliny glutamové a prolinu. Tyto změny se uskute?ňují hlavně v těch ?ástech ?nělky, kde se nalézají pylové lá?ky. P?edev?ím dochází ke zvy?ování hladiny kyseliny γ-aminomáseìné a alaninu a k úbytku kyseliny glutamové. Intensita těchto jev? je mnohem výrazněj?í po opylení kompatibilním ne? v p?íipadě inkompatibilní autogamie. Jejich podstata je vysvětlována na základě p?edpokládaného hlavního směru katabolismu kyseliny γ-aminomáselné a alaninu cestou transaminace s kyselinou α-ketoglutarovou relativním nedostatkem této ketokyseliny. P?i sní?ené hladině glycid? dochází v opylenýoh ?ně1kách k akumulaci asparaginu. V cizoprá?enych ?nělkáeh se zvy?uje jeho hladina podstatně rychleji ne?, po samosprá?ení. Jestli?e je hromadění asparaginu d?sledkem intensivněj?ího prodýchávaní bílkovin p?i nedostatku cukr?, vyplývá z uvedeného stejně jako z p?ede?lé práce (TUPý 1961), ?e pylové lá?ky vyu?ívají z ?nělkového pletiva. substráty pro dýchání a ?e je tento proces omezován p?i jejich inkompatibilitní inhibici. V semenících opylených květ? se zvy?uje ji? v době, kdy pylové lá?ky prorustají ?nělkou, hladina kyseliny γ-aminomáselné a alaninu. Kvantitativně je toto zvý?ení p?ímo závislé na rychlosti r?stu lá?ek dané kompatibilním ?i inkompatibilním charakterem p?ílu?ného opylení.  相似文献   

6.
Byly zji??ovány změny osmotického potenciálu (osmotického tlaku) buně?né ??ávy (vylisované z listových pletiv usmrcených p?i 100°C) p?i pasivní vodní bilanci (vadnutí) ?ástí ?epele v závislosti na zvět?ujícím se vodním deficitu (na ztrátě vody). Teoreticky by toti? bylo mo?no p?edpokládat, ?e voda vydaná p?i pasivní vodní bilanci pochází rovnoměrně z ve?keré vody buně?né, tedy také poměrně z podílu, obsa?eného v buně?né ??ávě. V tom p?ípadě by se buně?ná ??áva koncentrovala úměrně vznikajícímu deficitu. V naprosté vět?ině pozorovaných p?ípad? stoupal v?ak osmotický tlak (klesal osmotický potenciál) strměji ne? teoreticky odpovídá sou?asné ztrátě vody. Ze zji?těných rozdíl? mezi zmíněným teoretickým pr?během a mezi nalezenými hodmotami byl vypo?ítán odhad percentuálního podílu ?mobilní” vody v buňce, tj. toho podílu, kterého se v?dy bezprost?edně týkají změny obsahu vody v buňce. Tento podíl ?mobilní” vody byl u dospělých list? kolem 70 a? 80%. Velikost podílu ?mobilní” vody závisela na rychlosti vzniku vodního deficitu: P?i rychlém vadnutí byl u dospělých list? zji?těn men?í podíl ne? p?i vadnutí pomalém. To svěděí o tom, ?e ?mobilní” podíl buně?né vody je vymezován podle vodní bilance buňky dynamickou rovnováhu intracelulárních difusních proud? vody podle gradient? difusního tlaku vody mezi jednotlivými podíly buně?né vody, je? jsou ur?eny r?znou vazbou (?vázaná” voda) i r?znou lokalisací v buňce.  相似文献   

7.
Jestli?e byly pokusně květy den p?ed opylenim odděleny od rostliny a inkubovány ve vodě za teploty 25° C, projevil se v jejich pestících během následujících t?í dn? r?st pylových lá?ek v hladině glukosy a fruktosy. Prvý den po opylení bylo mno?ství těchto cukr? v apikálních ?ástech ?nělek z neopylených květ? vy??í, v basálních úsecích a v semeníeích naopak vět?inou ni??í ne? v p?íslu?ných ?ástech květ? opylených. V dal?ích dvou dnech do?lo i zde v p?ípadě opylení, a to p?edev?ím po allogamii, k silněj?ímu úbytku obou glycid?, tak?e po t?etím dnu bylo glukosy a fruktosy nejvíce v pestících neopylených, nejmáně po kompatibilním sprá?ení. Tento pokles byl nejvýrazněj?í v semeníeích, i kdy? do nich ani kompatibilní lá?ky je?tě nepronikly. V pokusech, kdy byly květy ponechány na rostlinách kultivovaných v polních podmínkách, nedo?lo v jejich pestících ani 80 hodin po kompatibilním opylení ke sní?ení obsahu glukosy a fruktosy. Z uvedených skute?ností lze vyvodit tyto záváry: R?st lá?ek ?nělkou vyvolá vá zvý?ený p?ísun glycid? do celých pestík?. Jak kompatibilní, tak inkompatibilní lá?ky vyu?ívají cukry z ?nělkováho pletiva. Oba tyto jevy jsou intenzívněj?í po allogamii ne? v p?ípadě inkompatibilní autogamie. Vzhledem k tomu, ?e kompatibilní lá?ky rostly normálně ?nělkou i za sní?ené hladiny glukosy a fruktosy, není absolutní zvý?ení obsahu těchto cukr? v pestících pro r? st lá?ek nezbytné. V opylených ?nělkách se mění poměr glukosa/fruktosa ve prospěch glukosy. Hodnota tohoto kvocientu se zvy?uje jak v apikálních, tak v basálních ?ásteeh ?ně1ek p?edev?ím po opylení kompatibilním. Tento jev je v souladu s hypothesou uvedenou d?ive (TUpý- 1959, 1960 podle ní? pylové lá?ky prodýchávají hlavnð sacharosu a z ní p?edev?ím její fruktofuranosovou slo?ku.  相似文献   

8.
Chloralizujeme-li klíoní koren bobu (Vicia jaba L.) nekolikrát po sobě, vznikne v zevní vrstvě pleromu a ve vnitrní periblemu mnoho polyploidních buněk, které tvoíí nepravidelnou mozaiku, z ní? vznikne transverzální meristem postranních mixoploidních koren?. Na vzniku ka?dé z nich ú?astní se nékolik, pr?měrně asi 30 buněk, a jejich ?inností probíhá ko?enem vedle diploidních. je?tě několik polyploidních provazcú nebo sektor?. Iniciály postranních ko?en? mohou p?sobit dvoustranně jako kambium nebo jednostranně, oddělujíce buňky bud jen pro ?epi?ku nebo jen pro vlastní ko?en. Na zalo?ení postranních ko?enú se v chlorali-zovaných hlavních ko?enech m??e ú?astnit několik vrstev buně?n?ch. Během vývoje mixoploidních ko?en? m??e být některá vrstva iniciál nahrazena vrstvou s ný sousedícý, ?ím? m??e být zastaven práb?h núkterého provazce nebo sektoru ve vrcholu ko?enovém. Diploidní a mixoploidní tkáň m??e se jevit na p?ícném pr?rezu ko?enem velmi nepravidelně rozdělenou. P?esto mohou mít mixoploidní ko?eny zevní tvar v celku normální, nepravidelnosti vznikají vylu?ováním polyploidních ?eber z dal?ího vývoje ko?en? nebo u plomen eutelických a amorfních. V ko?enech, v nich? jsou polyploidní buňky v men?ině, p?sobí jako cizí elementy a jsou pozvolna rozmanitým zp?sobem z dal?iho vývoje vrcholu vylucovány. V ko? enu se děje jaké si samo?istě ní, které m? The current version does not support copying Cyrillic text to the Clipboard. je v?ak pravdě podobno, ?e ve vrcholech, které se skládají z velké vě t?iny buněk polyploidních, m??e probíhat pochod opa?ný vedoucí k úplné jejich polyploidisaci.  相似文献   

9.
V p?edlo?ené práci je sledován ú?inek humusových látek aplikovaných na listy cukrovky post?ikem. Sou?asně je ově?ována vhodnost kombinace humusových látek s minerálními ?ivinami. Ukazuje se, ?e post?ik humusovými látkami zvlá?tě v kombinaci s minerálními ?ivinami p?íznivě ovlivňuje r?st cukrovky, zvy?uje váhu list? i ko?ene a celkové mno?ství cukru v ko?eni. Ú?inok post?iku humusovými látkami je vět?í u rostlin pěstovaných ve vodní kultu?e a st?íkaných ?ivným roztokem s kompletněj?ím zastoupením minerálních prvk?. Humusové látky p?i aplikaci na list vyvolávají podobné změny v anatomické stavbě pletiv a orgán?, jako p?i jejich aplikaci do ?ivného roztoku ke ko?en?m. Humusové látky zvlá?tě v kombinaci s minerálním roztokem zvy?ují v listech cukrovky mno?ství chlorofylu a zvy?ují intezitu fotosyntézy. Post?ik humusovými látkami zvy?uje sou?asně transpiraci cukrovky.  相似文献   

10.
Nalézají-li se polyploidní buně?né provazce nebo sektory na periférii ko?enového vrcholu, mohou jejich iniciály zastavit své dal?í dělení a polyploidní tkáň m? ? ezrosolovatěním a rozpu?těním hrani?ních blan být od vrcholu odlou?ena. Je to pochod chorize, který je obdobný odlupování buně?ných vrstev postranní ko?enové ?epi?ky. V mixoploidních vrcholech jsou odlu?ovány polyploidní provazce nebo sektory, které jenom někdy obsahují té? několik vtrou?ených ?ad diploidních buněk. Tento odlu?ovací pochod m??e p?ispět podstatně diploidizaei mixoploidních ko?enových vrchol?. Méně ?asto m??e vrchol obsahující vět?inu polyploidních buněk, zvlá?tě kdy? zaujímají plerom, odlou?it periferní diploidní buně?né vrstvy, ?ím? se m??e stát ?isté polyploidním. I v p?írodě m??e takovým pochod?m docházet, nebo? vněj?í ?initelé snadno mohou v ko?enech vyvolat vznik polyploidních buněk. Polyploidní buňky p?sobí -nejspí?e hmotně - jako cizí elementy na zápoj v buňkách diploidních.  相似文献   

11.
Zkoumáním pr?běhu zimního odpo?inku za období 1954–1959 byly zji?těny údaje, na základě kterých je mo?no tvrdit, ?e v podmínkách ji?ního Slovenska meruňka vstupuje do stadia zimního odpo?inku v pr?běhu srpna a ukon?uje toto období během prosince. V uvedených podmínkách pot?ebuje meruňka na jeho p?ekonání 1200–1300 hodin teploty ni??í ne? +6,0°C. Z 11 meruňkových odr?d studovaných na trvání zimního odpo?inku od?ezáním větví a p?ená?ením do skleníkového prost?edí odr?da Ananásová ra?ila pravidelně později o 6–10 dní proti ostatním odr?dám. Tento fakt se shoduje i s praktickými zku?enostmi p?i pěstování meruňky v normálních ekologických podmínkách mírného pásma, kde uvedená odr?da kvete o 3 a? 6 dní později ne? ostatní odr?dy. Na základě pokus? p?i?el autor k závěru, ?e je nemo?né hovo?it o p?ímé závislosti mezi dobou trvání zimního odpo?inku a mrazuvzdorností meruňky. Rostlina po ukon?ení zimního odpo?inku je velmi závislá na teplotních podmínkách prost?edí. P?i p?íznivých teplotních podmínkách zimy (bez kolísání teplot) jsou meruňky schopné odolat mraz?m a? ?20,0°C.  相似文献   

12.
Pri studiu charakteru vzájemného vztahu mezi porfyriny obsahujícími ?elezo a ho??ík jsme uva?ovali o katalytické aktivitě Fe-porfyrin? a o mo?nosti jejich ú?asti p?i tvorbě chlorofyl? v listech a ko?enech rostlin. Byly sledovány změny v obsahu barviv list? v souvislosti s metabolismem ?eleza v rostlině (?innost enzym? obsahujících ?elezo, synthesa protohematinu), a to hlavně: I. p?i aplikaci r?zných slou?enin p?sobících na jednotlivé slo?ky oxydore-dukěních systém? a obsah barviv v rostlině; 2. p?i změnách metabolismu p?sobením změněných podmínek minerální vý?ivy; 3. p?i srovnávání zvlá?tností metabolismu pestrolistých rostlin. Domníváme se, ?e ve v?ech p?ípadech je proces tvorby chlorofyl? p?ímo vázán na pochody vyu?ití ?eleza rostlinou, jak v listech, tak v ko?enech. Jsou uvedeny údaje o synthese protohematinu v isolovaných ko?enech některých rostlin, aktivitě Fe-porfyrinových enzym? v nich a tvorbě chlorofyl? p?i osvětlení ko?en?. Diskutuje se o významu synthesy Fe- a Mg-porfyrin? v ko?enech pro metabolismus celé rostliny. Uva?uje se o vzájemné souvislosti mezi pochody hromadění a vyu?ívání energie v buňce a o rovnováze mezi pochody synthesy a odbourávání pigment? v plastidech.  相似文献   

13.
V práci je popsán detoxinka?ní ú?inek humusových kyselin a blí?e studována jeho povahaListy vod’iho moru (Anacharis canadensis [MICHX.] PLANCH), vlo?eny do roztoku agropyrenu izolovaného z oddenk? pýru plazivého (Agropyron repens [L.] P. BEAUV.), odumírají po ?ase, jeho? délka je zavislá na koncentraci jedu. P?ídavek některyeh humusovych frakcí tuto dobu více nebo méně prodlu?uje. Pokus s fulvokyselinami ukázal, ?e toto ochranné p?sobení se projeví i tehdy, jsou-li listy vodního moru v roztoku této f?akce p?edem adaptovány a p?sobí-li agropyren dodate?ně. Ochranná schopnost fulvokyselin nespo?ívá tedy pouze v mimobuně?ném chemickém nebo fyzikálně chemickém otupení biologické ú?innosti agropyrenu, nýbr? i ve zvý?ení biologické odolnosti buňky ú?inkem této humusové frakce.  相似文献   

14.
A?koliv na zá kladě mnoha pokus? se p? edpokládalo, ?e tzv. bÍlkovinná v?etena v buňkách tzn. buně?né inkluse X-viru kaktus? (Ca XV), jsou slo?ena z ?etních prodlou?ených ?ásti Ca XV, p?esto to dosud nebylo proká zá no. Proto jsme se pokusili pomocÍ fluoreskujÍcÍch protilátek doká ?at, ?e bilkovinná v?etena jsou skute?ně agregáty virových ?ástic. V těto práci jsme pouzili tzv. nep?Ímé metody. Nejprve jsme p? sobili na buňky obsahujÍci tato v?etena homologiokým antisé rem proti Ca XV, zÍskanym imunizacÍ králÍk? a teprve potom jsme buňky vlo?ili do roztoku fluoreskujicÍch protilátek proti králicimu γglobulinu. BÍlkovinná v?etena svitila potom ve fluorescen?nÍm mikroskopu silně ?lutozeleně (bylopou?ito fluoresceinisothiocyaná tu). Tato fluorescence ná m uká zala, ?e nastala pozitivnÍ reakce a ?e bÍlkovianá v?etena jsou slo?ena z virových ?ástic. ?etné kontrolnÍ pokusy potvrdily ná? základnÍ pokus.  相似文献   

15.
V práci byla sledována mo?nost allelopatického ovlivňování následných rostlin p?edplodinami p?i kultivaoi v odstupňovaných ?asových intervalech po sobě v té?e zemině u tě chto kombinací: mák — cukrovka, ho??ice — je?men, konopí — ?ito, cibule — ?epka. Pokusy byly prováděny v kvítiná?ích s kompostovou zeminou, umístěných během pokusu na zahradě a zapu? těných do p?dy. Byl sledován r?st p?edplodin a následných rostlin v po?áte?ních fá zích r?stu. P?ed vysetím následných rostlin byla stanovena u odebraných vzork? zemin intensita respirace, okam?itá vlhkost a obsah fyziologicky p?ístupného dusíku, fosforu a draslíku. Ve v?ech zkou?ených kombinacích byly následné rostliny ovlivněny kultivací p?edplodiny a následným ulo?ením zeminy. Změny r?stu následných rostlin ?áste? ně korelovaly s obsahem fyziologicky p?ístupného dusíku v zemině. Podle jejich charakteru v?ak bylo té? patrno, ?e se na nich podílely i allelopatické faktory. Zna?ně inhibi?ně p?sobil mák na cukrovku, mé ně inhibi?ně p?sobila ho??ice na je?men a cibule na ?epku. ??inek konopí na ?ito byl promě nný s dobou ulo?ení zeminy. Změny v obsahu fyziologicky p?ístupného dusíku, fosforu a draslíku v pokusné zemině neodpovídaly . mno?ství narostlé p?edplodiny, co? bylo podmíněno pou?itou kultiva?ní metodikou. Poměrně rychlé doplňování p?edplodinou vy?erpaných dusi?nan? v pokusné zemině s dobou jejího ulo?ení bylo pravděpodobně podmíněno nitrifikacními procesy. Podle stanovených změn intensity respirace pokusné zeminy se na allelopatickém ovlivnění mohla podílet i pudní mikroflora.  相似文献   

16.
Byl sledován vliv CO2 na plasmatické struktury ko?enového vlá?ení p?enice a je?mene a epidermálních buněk cibule. Výsledky byly hodnoceny na ?ivém materiálu pomocí fázového kontrastu. Ko?enové vlá?ení je?mene a epidermis cibule reagují na krátkodobý pobyt v atmosfé?e CO2 zastavením proudění plasmy, prodlu?ováním mitochondrií a zakulacením plastid?. Déle trvající vliv CO2 zp?sobuje fragmentaci mitochondrií. V této fázi se buňky nejrychleji vzpamatovávají ze ?oku zp?sobeného pobytem v CO2. P?íli? dlouhé ovlivňování rostlin atmosférou CO2 ú?inkuje letálně. Ko?enové vlá?ení p?enice, které má vět?inou zrnité mitochondrie, reagovalo ji? na 40minutový pobyt v CO2 zakulacením v?ech plasmatických partikulí. Tato pozorování se shodují s výsledky získanými na trvalých preparátech v práci p?ede?lé a vedou k domněnce, ?e fragmentací mitochondrií se buňka p?izp?sobuje ztí?eným podmínkám pro dýchání.  相似文献   

17.
Roku 1900 uve?ejnil jsem p?edbě?nou zprávu o ?krobových zrnech pohyblivých vlivem tí ?e v rostlinných buňkách, které mo?no pova?ovat ze georeceptory analogické statocystám ? ivo?ich?. Roku 1901 vy?la moje definitivní práce o tomto p?edmětu. V ní popsal jsem nápadnou cytologickou reakci, která se p?i geotropickém podrá?dění objevuje v kolumele ko?enových ? epi?ek uvnit? buněk obsahujících p?esýpavý ?krob. Tato reakce, kterou jsem pova?oval za symptom, ?e na tyto buňky tí?e p?sobí a ?e je mo?no pova?ovat je za georeceptory, nebyla témě? v?bec později zkoumána a byla zapomenuta. Teprve r. 1962 uve?ejnil o ní nové nálezy AUDITS na základě elektronového výzkumu statocyt? v ko?enových ?epi?kách. Autor uve?ejňuje první mikrofotografie této cytologické georeakce a popisuje nové pokusy, které ?iní pravděpodobným jeho názor, ?e je vybavena tlakem ?krobových zrn na poko?ní vrstvi?ku plasmatickou ve statocytech. Upozorňuje také, ?e nejen specificky tě??í, ný br? i specificky leh?í statolity mohou fungovat jako tělíska vybavující georeakci.  相似文献   

18.
Dekapitované klíění rostliny lnu a hrachu, nat?ené pastou s trijodbenzoovou kyselinou bud nad dělohami nebo pod nimi, jeví zvlá?tě na epikotylních pahýlech rozdílné morfogenetické změny v souvislosti, s rozdílnými korela?ními vlivy jejich epigeických, resp. hypogeických děloh, je? primárně rozhodují o rozdílné dominanci jejich pupenových základ?. V nejraněj?ím období klí?ení lze prvního internodia lnu, oby?ejně velmi krátkého, a ?apík? děloh hrachu u?ít k d?kazu antagonismu mezi kyselinou trijodbenzoovou a indolyloctovou. První internodium lnu se prodlou?ilo p?sobením trijodbenzoové kyseliny na semena, i kdy? zrála na rostlině, a ?apíky děloh hrachu, zadr?ené v r?stu má?ením semen v roztoku kyseliny trijodbenzoové, se zvět?ily p?sobením kyseliny indolyloctové zvněj?ku. Tato kyselina naopak ru?í morfogenetické ú?inky trijodbenzoové kyseliny na semena lnu.  相似文献   

19.
Na ultratenkých ?ezech buňkami st?evního epitelu k?ís?Javesella pellucida (F.), p?ená?ejících sterilní zakrslost ovsa (pova?ovanou za virózu), byly pozorovány jednak virové ?ástice ulo?ené v cytoplasmě v trubicovitých strukturách, jodnak mikroorganismus, který je podle tvaru, velikosti a vnit?ní stavby toto?ný s druhy roduMycoplasma nebo se zástupci skupiny PLT (psittakóza, lymfogranulom, trachom). Jde o pravděpodobného p?vodce sterilní zakrslosti ovsa.  相似文献   

20.
V práci trvající t?i léta byla sledována choroba jírovce madalu (Aesculus hippocastanum L.), u nás i jinde v st?ední Evropě v?eobecně roz?í?ená. Hlavním pracovi?těm byl zámecký park v Lu?anech u P?e?tic (Hlávkova nadace). P?íznaky a jejich vývoj byly pozorovány také na mnohých jiných místech. Podle t?ídění L. Bose (Wageningen) pat?í tyto symptomy do skupin barevné změny (II), Nekrosa (IV), Deformace (VII) a ?áste?ně i Redukce r?stu (plod?). Jde o chorobu, kterou p?ed 60 lety popisovalSorauer aThomas jako abiosu. Poněvad? některé zjevy poukazovaly na chorobu virového p?vodu, byly podniknuty diagnostické zkou?ky. Serologická byla negativní pro chemismus madalových list?, které nejsou vhodným materiálem pro tuto metodu. Zkou?ky roubovací a o?kovací na zdravých semená?ích byly positivní. Virová nekrosa madal? je choroba systémová, která není p?ená?ena mechanicky dotekem. Snadno se v?ak p?ená?í roubováním a o?kováním. Některé známky nasvěd?ují té? pravděpodobnosti, ?e do jisté míry m??e být p?ená?ena i semenem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号