首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays var. Caldera) plants were grown under sterile and not sterile conditions in soil in an atmosphere continuously enriched with 14CO2 for 36 days. At harvest the above ground parts of the maize were cut off and the roots were separated from the soil by washing with water. The soil was dispersed using ultrasonics and separated into soluble clay silt and sand fraction. Roots were included in the coarse sand fraction. 25% of the total label present in the soil 5.5% of that in the soil-plant system, was water soluble. Very little label was present in the clay and silt fractions (5% in each) and most (65%) was in the sand fraction as root material.Rapid extraction of soil after the removal of roots without ultrasonic treatment released soluble matter which amounted to <0.5% of the total activity in the soil-plant system.Isolated roots steeped in water released about 18% of their activity. Much of the soluble fraction may therefore be root lysate.The soil and roots accounted for 22% of the total activity in the soil-plant system. Glucose accounted for 89% of the sugars in the soluble fraction of the soil.78% or more of the 14C present in glucose, arabinose and xylose constituents of the root-soil mixture occurred in the coarse and fine sand fractions, which also included root material. For mannose and galactose the value was 70% and for rhamnose, 50%.After reinoculation of the soil-root mixture and decomposition for 56 weeks, the water soluble material obtained on fractionation of the soil decreased to less than 1% of the total activity. A much greater proportion, 25%, was present in the clay fraction as a result of decomposition.  相似文献   

2.
The aim of this study was to clarify the importance of the soluble fraction on cell wall decomposition. Wheat plant was chosen as a model and was harvested at three stages of maturity: anthesis (A stage), 20 days after anthesis (B stage) and physiological maturity (PM stage). Wheat third internode (numbered down from the ear) were selected for this study. Internode age influenced the cumulative CO(2) kinetics with internodes from wheat stem harvested at anthesis mineralizing 62.1%+/-2.2 of added residue C whereas those harvested at the B and PM stages mineralized 58.8%+/-1.4 and 51.6%+/-1.7, respectively of the added C. Chemical analyses revealed that maturation of the selected internodes mainly altered residue quality by modifying the proportion of soluble to cell wall fractions rather than the quality of these fractions. The hexose to pentose ratios were good biomarkers of microbial sugars for both soluble and cell wall fractions, as were the uronic acids, which are not commonly determined in soil decomposition studies. This study clearly demonstrated that the contents of the internode soluble fraction did not affect the extent of cell wall C mineralization. Therefore, the soluble content of crop residues would not regulate the soil microbial populations able to mineralize cell wall C. However, this needs to be validated on a broader range of residue types with different nature of cell wall C or soluble compounds.  相似文献   

3.
不同肥力棕壤溶解性有机碳、氮生物降解特性   总被引:13,自引:0,他引:13  
汪景宽  李丛  于树  李双异 《生态学报》2008,28(12):6165-6171
溶解性有机碳、氮在土壤全碳、全氮含量中所占的比例很小,但却是土壤有机质中最为重要和活跃的部分。研究利用土壤溶解性有机碳、氮生物降解的测定方法,分别选取沈阳农业大学试验站不同肥力及与定位试验地紧密相连的自然林地棕壤为研究对象,开展棕壤溶解性有机碳、氮的生物降解特性的研究,为了解溶解性有机碳、氮在土壤生态系统碳、氮循环中的作用,探讨棕壤溶解性有机碳、氮与土壤肥力的关系提供理论依据。研究结果表明,棕壤林地溶解性有机碳、氮的含量最高,高肥处理次之,低肥处理含量最低。棕壤溶解性有机碳、氮与全碳、全氮和微生物量碳、氮的相关性达到极显著水平,与土壤肥力紧密相关,可以作为指示土壤肥力的重要指标。不同肥力棕壤溶解性有机碳、氮的降解速率在培养初期较快,而后逐渐减慢,降解数据符合双指数衰变模型。棕壤溶解性有机碳分别由降解速率不同的两个库组成:周转时间在1d的易分解部分和周转时间大约为400d的难分解部分。棕壤溶解性有机氮是由周转速率大约为2d的易降解部分和周转速率在99~105d左右的难分解部分组成. 经过42d的培养,浸提液中剩余溶解性有机质碳氮比值较培养前有所增加。  相似文献   

4.
The lymphoid leukaemia L 1210 cells of mice were labelled with 125I. The cell homogenates were fractionated and from the microsomal fraction 90 per cent of the radioactive material could be precipitated with perchloric acid, whereas only 4 per cent was precipitated from the soluble fraction. Papain bound with Enzacryl AH released 31 per cent of radioactivity. It was concluded therefrom that the surface proteins of the cells were labelled. Electrophoretic separation of these proteins in polyacrylamide gel with sodium dodecyl sulphate was performed and 6--8 radioactive fractions of surface peptides were found.  相似文献   

5.
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several ecosystem types. The water-extractable fraction of organic C was high for all five plant species, as was the biodegradable fraction; in most cases, more than 70% of the initial DOM was decomposed in the first 10 days of the experiment. The chemical composition of the DOM changed as decomposition proceeded, with humic (hydrophobic) fractions becoming relatively more abundant than nonhumic (hydrophilic) fractions over time. However, in spite of proportional changes in humic and nonhumic fractions over time, our data suggest that both fractions are readily decomposed in the absence of physicochemical reactions with soil surfaces. Our data also showed no changes in the 13C signature of DOM during decomposition, suggesting that isotopic fractionation during DOM uptake is not a significant process. These results suggest that soil microorganisms preferentially decompose more labile organic molecules in the DOM pool, which also tend to be isotopically heavier than more recalcitrant DOM fractions. We believe that the interaction between DOM decomposition dynamics and soil sorption processes contribute to the 13C enrichment of soil organic matter commonly observed with depth in soil profiles. published online 2004  相似文献   

6.
Solid-state cross-polarisation/magic-angle-spinning3C nuclear magnetic resonance (CP/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction. Although similar types of carbon were present in all of the fractions analysed, an influence of both soil type and particle size was evident.The chemical structure of the organic materials contained in the particle size fractions isolated from the Andosol was similar; however, for the Mollisols and Oxisols, the content of O-alkyl, aromatic and alkyl carbon was greatest in the coarse, intermediate and fine fractions, respectively. The compositional differences noted in progressing from the coarser to finer particle size fractions in the Mollisols and Oxisols were consistent with the changes noted in other studies where CP/MAS13C NMR was used to monitor the decomposition of natural organic materials. Changes in the C:N ratio of the particle size fractions supported the proposal that the extent of decomposition of the organic materials contained in the fine fractions was greater than that contained in the coarse fractions. The increased content of aromatic and alkyl carbon in the intermediate size fractions could be explained completely by a selective preservation mechanism; however, the further accumulation of alkyl carbon in the clay fractions appeared to result from both a selective preservation and anin situ synthesis.The largest compositional differences noted for the entire organic fraction of the five soils were observed between soil orders. The differences within orders were smaller. The Mollisols and the Andosol were both dominated by O-alkyl carbon but the Andosol had a lower alkyl carbon content. The Oxisols were dominated by both O-alkyl and alkyl carbon.A model describing the oxidative decomposition of plant materials in mineral soils is proposed and used to explain the influence of soil order and particle size on the chemical composition of soil organic matter in terms of its extent of decomposition and bioavailability.  相似文献   

7.
Misra  S. G.  Pande  Padmakar 《Plant and Soil》1974,40(3):679-684
Summary Additions of organic matter to a red soil resulted in the solubilization of the native and added nickel during the early days of its decomposition due to the production of various organic acids. It has been observed that as the incubation period advanced, more and more nickel was transformed into less soluble form so that after 80 days, only 8.1–8.8 and 14.1 ppm nickel could be recovered with berseem and glucose respectively when added along with 100 ppm nickel. The berseem has been found to have a tendency to fix greater amount of nickel in the soil than glucose. The available phosphate in the soil was also found to increase initially and then decrease. A greater content of organic carbon in the berseem-treated soil was closely related to the fixation of nickel in the soil. Formation of a complex between nickel and organic matter has been envisaged. re]19730806  相似文献   

8.
Mechanism of cellulose synthesis in Agrobacterium tumefaciens.   总被引:10,自引:2,他引:8       下载免费PDF全文
Extracts of Agrobacterium tumefaciens incorporated UDP-[14C]glucose into cellulose. When the extracts were fractionated into membrane and soluble components, neither fraction was able to synthesize cellulose. A combination of the membrane and soluble fractions restored the activity found in the original extracts. Extracts of cellulose-minus mutants showed no significant incorporation of UDP-glucose into cellulose. When mixtures of the extracts were made, the mutants were found to fall into two groups: extracts of mutants from the first group could be combined with extracts of the second group to obtain cellulose synthesis. No synthesis was observed when extracts of mutants from the same group were mixed. The groups of mutants corresponded to the two operons identified in sequencing the cel genes (A. G. Matthysse, S. White, and R. Lightfoot. J. Bacteriol. 177:1069-1075, 1995). Extracts of mutants were fractionated into membrane and soluble components, and the fractions were mixed and assayed for the ability to synthesize cellulose. When the membrane fraction from mutants in the celDE operon was combined with the soluble fraction from mutants in the celABC operon, incorporation of UDP-glucose into cellulose was observed. In order to determine whether lipid-linked intermediates were involved in cellulose synthesis, permeablized cells were examined for the incorporation of UDP-[14C]glucose into material extractable with organic solvents. No radioactivity was found in the chloroform-methanol extract of mutants in the celDE operon, but radioactive material was recovered in the chloroform-methanol extract of mutants in the celABC operon. The saccharide component of these compounds was released after mild acid hydrolysis and was found to be mainly glucose for the celA insertion mutant and a mixture of cellobiose, cellotriose, and cellotetrose for the celB and celC insertion mutants. The radioactive compound extracted with chloroform-methanol form the celC insertion mutant was incorporated into cellulose by membrane preparations from celE mutants, which suggests that this compound is a lipid-linked intermediate in cellulose synthesis.  相似文献   

9.
Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.  相似文献   

10.
The continuous flow method was used to study the decomposition of uniformly tagged glucose in soil with different inorganic nitrogen and phosphorus levels. It was found that the amount of glucose carbon mineralized to carbon dioxide was higher if nitrogen and phosphorus were added together with the glucose. Some of the labelled carbon escaped from the soil and the amount of leached-out carbon was in inverse proportion to the amount of nitrogen and phosphorus in the soil. The level of mineral nutrient elements stimulated the rate of glucose mineralization in the initial phase of the continuous process. The rate of glucose mineralization in the steady state was stimulated in soil continuously enriched with glucose together with nitrogen and phosphorus. The quantitative relationship between the assimilation and oxidation of glucose carbon depended on the nitrogen and phosphorus concentration and was in inverse proportion to the mineral element level. The continuous addition of glucose stimulated decomposition of the native soil organic matter. The resultant priming effect was balanced, however, by the retention of glucose carbon in the soil, with the result that the carbon balance remained positive. The rate of glucose oxidation, the amount of carbon retained in the soil and the priming effect of glucose were strongly influenced by the flow rate.  相似文献   

11.
Experiments were conducted to determine the mechanism by which dietary alfalfa can protect against zearalenone toxicosis. Female weanling rats were fed semipurified diets containing whole alfalfa meal, fractionated alfalfa meal (fiber, solvent extract, and water extract), and purified components of alfalfa (coumestrol, saponin, lignin, coumestrol + lignin, and saponin + lignin) with and without 250 mg zearalenone/kg of diet. All ingredients were provided for 2 weeks at levels corresponding to those found in diets containing 15 and 25% alfalfa. Yorkshire gilts were fed 15 and 25% alfalfa meal with and without 10 mg zearalenone/kg of diet for 4 weeks. The feeding of zearalenone to rats reduced growth and food consumption but this was overcome by 25% alfalfa. Zearalenone also increased the activity of hepatic 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD), the enzyme believed to metabolize zearalenone to alpha- and beta-zearalenols. Dietary alfalfa did not overcome this effect. Alfalfa fiber was the only fraction to partially overcome the growth-depressing effects of zearalenone while the other fractions had no beneficial effects and 3 alpha-HSD was not affected by diet. None of the purified components affected growth parameters or 3 alpha-HSD. The enzyme was also not affected by zearalenone or alfalfa in swine diets. Coumestrol, alpha-zearalenone, and beta-zearalenone were shown to be competitive inhibitors of 3 alpha-HSD in rat liver. It was concluded that the fiber fraction of alfalfa protects against zearalenone toxicity, and that this effect is not dependent on coumestrol or saponin and is not likely mediated through 3 alpha-HSD.  相似文献   

12.
Summary 1. The fixation of N15-labeled nitrogen in small vessels of California soil under various conditions of pH, substrate level, oxygen tension, and other soil conditions was observed.2. Nitrate concentrations greater than 1.0–1.5 microequivalents per gram soil were found to suppress nitrogen fixation but not the growth ofAzotobacter.3. Large amounts of nitrogen were fixed when soluble organic substrates (e.g. glucose or sucrose) were added to the soil.4. Moderate fixation also resulted from the inversion of a disc of sod.5. Fixed nitrogen appeared largely in the nitrate and ammonia-amide fractions with that in the nitrate fraction probably representing nitrification of more reduced initial products of fixation.6. Under conditions of these experiments growing grass did not enhance fixation. At higher light intensities, however, such an enhancement might be observed.7. The incorporation of grass cuttings, straw or alfalfa meal into the soil caused only a slight increase in fixation.8. The inoculation of soils with large populations ofAzotobacter did not result in increased fixation.This investigation was supported in part by a contract with the United States Atomic Energy Commission.  相似文献   

13.
The decomposition of plant material is an important ecosystem process influencing both carbon cycling and soil nutrient availability. Quantifying how plant diversity affects decomposition is thus crucial for predicting the effect of the global decline in plant diversity on ecosystem functioning. Plant diversity could affect the decomposition process both directly through the diversity of the litter, and/or indirectly through the diversity of the host plant community and its affect on the decomposition environment. Using a biodiversity experiment with trees in which both functional and taxonomic diversity were explicitly manipulated independently, we tested the effects of the functional diversity and identity of the living trees separately and in combination with the functional diversity and identity of the decomposing litter on rates of litter decomposition and soil respiration. Plant traits, predominantly leaf chemical and physical traits, were correlated with both litter decomposition and soil respiration rates. Surface litter decomposition, quantified by mass loss in litterbags, was best explained by abundance‐weighted mean trait values of tree species from which the litter was assembled (functional identity). In contrast, soil respiration, which includes decomposition of dissolved organic carbon and root respiration, was best explained by the variance in trait values of the host trees (functional diversity). This research provides insight into the effect of loss of tree diversity in forests on soil processes. Such understanding is essential to predicting changes in the global carbon budget brought on by biodiversity loss.  相似文献   

14.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

15.
Summary The effect of limestone application on the P supplying power of Davidson clay loam, a soil high in free iron, was investigated by laboratory and greenhouse procedures. The soil under study did not receive fertilization for a 17-year period prior to the investigation. Application of dolomitic limestone to the soil increased both yield and P uptake of 3 successive cuttings of alfalfa. A comparison of inorganic P fractions in the soil before and after growth of each alfalfa crop showed that mineralized organic P and Ca-P supplied P to the first cutting of alfalfa and that Fe-P supplied P to the second and third cuttings. Application of limestone increased the availability of the Fe-P fraction to the second and third crops of alfalfa. The P availability of the inorganic P fractions was explained on the basis of chemical properties of the soil.  相似文献   

16.
Aims Resource allocation in plants can be strongly affected by competition. Besides plant–plant interactions, terrestrial plants compete with the soil bacterial community over nutrients. Since the bacterial communities cannot synthesize their own energy sources, they are dependent on external carbon sources. Unlike the effect of overall amounts of carbon (added to the soil) on plant performance, the effect of fine scale temporal variation in soil carbon inputs on the bacterial biomass and its cascading effects on plant growth are largely unknown. We hypothesize that continuous carbon supply (small temporal variance) will result in a relatively constant bacterial biomass that will effectively compete with plants for nutrients. On the other hand, carbon pulses (large temporal variance) are expected to cause oscillations in bacterial biomass, enabling plants temporal escape from competition and possibly enabling increased growth. We thus predicted that continuous carbon supply would increase root allocation at the expense of decreased reproductive output. We also expected this effect to be noticeable only when sufficient nutrients were present in the soil.Methods Wheat plants were grown for 64 days in pots containing either sterilized or inoculated soils, with or without slow-release fertilizer, subjected to one of the following six carbon treatments: daily (1.5mg glucose), every other day (3mg glucose), 4 days (6mg glucose), 8 days (12mg glucose), 16 days (24mg glucose) and no carbon control.Important findings Remarkably, carbon pulses (every 2–16 days) led to increased reproductive allocation at the expense of decreased root allocation in plants growing in inoculated soils. Consistent with our prediction, these effects were noticeable only when sufficient nutrients were present in the soil. Furthermore, soil inoculation in plants subjected to low nutrient availability resulted in decreased total plant biomass. We interpret this to mean that when the amount of available nutrients is low, these nutrients are mainly used by the bacterial community. Our results show that temporal variation in soil carbon inputs may play an important role in aboveground–belowground interactions, affecting plant resource allocation.  相似文献   

17.
—Incubation of bovine retina membranes with UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous α-1, 4-glucan proteins. The transferring system was concentrated in membranes that floated at 0.94 and 1.10m -sucrose when centrifuged in a discontinuous sucrose density gradient and was almost absent in the rod outer segment (ROS) and the 100, 000 g supernatant fractions. The glucan proteins labelled by incubation with the radioactive sugar nucleotide at micromolar concentrations were distinguished in two fractions by their solubilities in trichloroacetic acid (TCA): glucan protein-I (GP-I), insoluble in TCA, and glucan protein-II (GP-II), soluble in TCA and precipitable by ethanol from the TCA soluble fraction. GP-I and GP-II were precipitated by trichloroacetic acid-phosphotungstic acid (TCA-PTA). A third fraction, glucan protein-III (GP-III) was found when incubations were carried out with UDP-[14C]glucose at millimolar instead of micromolar concentrations. GP-III was soluble in TCA and in TCA-PTA and precipitable by ethanol from the TCA soluble fraction. GP-II was excluded from a Sephadex G-200 column and showed a greater size than GP-I in a Sepharose 2B column. The radioactive residues obtained from the glucan proteins after digestion with pronase were totally included in a Sephadex G-25 column and were of a greater size than the labelled residues released with salivary α-amylase. Only radioactive maltose was found after a-amylase treatment. When membranes containing labelled GP-I and GP-II were incubated with unlabelled UDP-glucose at millimolar concentrations, GP-I was converted into GP-II and GP-III was formed.  相似文献   

18.
This paper describes an incubation experiment with homogeneously 14C labeled maize-straw and its insoluble fraction. The role of the soluble fraction in the decomposition process was assessed, using three independently measured characteristics: (1) fractionation of the maize-straw, resulting in kinetically different fractions; (2) microbial biomass C and its 14C activity determined by a fumigation extraction method, and (3) the 14C activity of the released CO2-C. The fumigation extraction method was proved to be useful from 9 days after the application of the maize-straw onwards. The fractionation method yielded a soluble (48%), a (hemi) cellulosic (47%), and a lignin fraction (1%). Nine days after addition of either the complete residue or its insoluble fraction, the microbial biomass C increased from 53 to 337 and 217 mg C kg-1 dry soil, respectively. Similar values were maintained up to day 40. The large increase in microbial activity was accompanied by a N-immobilization of 65 and 29 mg N Kg-1 dry soil for the maize-straw treatment and its insoluble fraction, respectively, resulting in biomass C/N values of 5.5 and 5.6 A genuine priming effect (10 and 7% of the total CO2-C production) on the mineralization of native soil organic C was caused by an increase in decomposition of the native C rather than by an increase in turnover of the microbial biomass in the soil amended with maize straw. The soluble fraction caused a priming effect on the decomposition of the less decomposable cell-wall fraction. Calculations by nonlinear regression confirmed this observation.  相似文献   

19.
The aim of our study was to follow the transfer of 14C-labeled ryegrass between size and density fractions of soil organic matter in a sandy and a loam soil. Our hypotheses were a) that the applied 14C would be transferred from light and soluble fractions to intermediate and heavy macroorganic matter fractions (>150 m) and finally become stabilized in microaggregates (<150 m), and b) that the physical protection of 14C associated with microaggregates against decomposition would decrease with increasing saturation of the microaggregates with soil organic matter. Generally, the hypotheses were confirmed. Immediately after application most of the label was present in the soluble and light macroorganic matter fractions. Newly synthesized microbial biomass fed on the labeled components of the fractions. The amounts of 14C in the soluble and light macroorganic matter fractions decreased rapidly, while the amounts of 14C in the intermediate and heavy macroorganic matter fractions and in microaggregates remained more or less stable. At the end of the incubation most of the residual soil 14C was found in the microaggregates. In the sandy soil 14C was concentrated in the 20–150 m fraction, whereas in the loam a larger proportion was present in the <20 m fraction.The mineralization rates of 14C-labeled material were similar in the light intermediate and heavy fractions of macroorganic matter and in the microaggregates 0 and 180 days after the application of 14C-labeled ryegrass. In all fractions, 14C mineralized more rapidly than total C. The results indicate that considerable amounts of 14C must have transferred from the soluble and light macroorganic matter fractions and newly synthesized microbial biomass to the intermediate and heavy macroorganic matter fractions and the microaggregates, and that 14C was not yet physically protected against microbial degradation during the whole incubation period. The degree of physical protection of 14C against decomposition in the microaggregate fraction <20 m was negatively correlated with the degree of saturation of this particle size fraction with soil organic matter.  相似文献   

20.
When cells of Acanthamoeba castellanii are placed in a non-nutrient medium, they differentiate into cysts which possess cellulosic walls. In the present study, the source of the glucosyl unit for cyst wall cellulose was investigated by following the encystment of trophozoites grown in the presence of 14C-labeled fatty acids (uniformly labeled palmitate or oleate) or [3-3H]glucose. Cells were fractionated at the beginning and after 30 hr of encystment using a modified Schmidt-Tannhauser procedure. In cells grown on fatty acids, 90% of the labeled material was in the lipid fractions both before and after encystment with the total amount of label/cell changing very little. Both partial and complete acid hydrolysis of the glycogen of the acidsoluble fraction and the alkali-insoluble residue of the cyst wall indicated that the glucose of both fractions was not radioactive, although Acanthamoeba is known to have a functional glyoxylate pathway.Fractionation data of cells grown on [3H]glucose indicated a sevenfold increase in radioactivity in the wall insoluble fraction and a fivefold decrease in the acid-soluble fraction with the cpm/cell of the other fractions changing very little after 30 hr of encystment. Approximately 70% of the 3H-labeled material was recovered as glucose from the 30-hr wall insoluble fraction following complete acid hydrolysis. The specific radioactivity of glucose in the cyst wall insoluble fraction was the same as that of glycogen glucose isolated from the acid soluble fraction of trophozoites. Electron microscopic autoradiography showed that the majority of nonlipid radioactivity was due to glycogen in trophozoites. Autoradiograms failed to reveal Golgi bodies or any particular region of the cell as being the specialized site of cellulose synthesis. The results of the fractionation and autoradiographic studies are consistent with the concept that glycogen is a precursor of cyst wall cellulose, and that glucosyl units of glycogen and/or other glucose derivatives are converted to cellulose without significant dilution under the experimental conditions used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号