首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The authors attempted to classify a group of five strains excluded in typing of the speciesCandida albicans (Robin) Berkhout because they displayed a relationship toCandida tropicalis (Cast.) Berkhout. They were found to include transitional forms showing progressive development to a higher type. Strain 29-3-32 formed a lower stage of transition fromCandida albicans toCandida tropicalis and was more similar toCandida albicans. Strain 29-3-58 formed a higher transitional stage and was more similar toCandida tropicalis. Strain 29-3-5 was similar toCandida albicans and formed the transition from the latter to strain 29-3-100, which was closely related toCandida intermedia andCandida tropicalis. Strain 29-3-68 formed the transition fromCandida guilliermondii toCandida intermedia and was similar toCandida guilliermondii and the related speciesCandida melibiosi.  相似文献   

3.
Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis.  相似文献   

4.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

5.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

6.
7.
Candida albicans is a major invasive pathogen, and the development of strains resistant to conventional antifungal agents has been reported in recent years. We evaluated the antifungal activity of 44 compounds against Candida strains. Magnoflorine showed the highest growth inhibitory activity of the tested Candida strains, with a minimum inhibitory concentration (MIC) of 50 μg/mL based on microdilution antifungal susceptibility testing. Disk diffusion assay confirmed the antifungal activity of magnoflorine and revealed that this activity was stable over 3 days compared to those of berberine and cinnamaldehyde. Cytotoxicity testing showed that magnoflorine could potentially be used in a clinical setting because it didn’t have any toxicity to HaCaT cells even in 200 μg/mL of treatment. Magnoflorine at 50 μg/mL inhibited 55.91?±?7.17% of alpha-glucosidase activity which is required for normal cell wall composition and virulence of Candida albicans. Magnoflorine also reduced the formation of C. albicans’ biofilm. Combined treatment with magnoflorine and miconazole decreased the amount of miconazole required to kill various Candida albicans. Therefore, magnoflorine is a good candidate lead compound for novel antifungal agents.  相似文献   

8.
Comparative antimicrobial properties of three artificial cationic synthetic antimicrobial peptides (SAMP): (RAhaR)4AhaβA (where R is Arg, Aha is 6-aminohexanoic acid, βA is beta-alanine), (KFF)3K and R9F2 with various amphiphilic properties have been studied relative to pathogenic strains of microorganisms: Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Salmonella enterica, Gram-positive bacteria Staphylococcus aureus, and pathogenic yeast fungus Candida albicans. The selectivity index (SI) values of the peptide preparations were calculated as the ratio of the 50% cytotoxic concentration (TC50) towards eukaryotic host cells to the MIC50 values of the testing antimicrobial peptides. The studied SAMPs appeared to be the most active against the pathogenic yeast fungus C. albicans and the bacterial strains St. aureus and P. aeruginosa. The SI values in these cases exceed 40. Some assumed molecular interactions of the studied SAMPs on the microbial cells have been considered, and possible pathways to increase their antimicrobial activity have been suggested. The proposed SAMPs can serve as a basis for the design and synthesis of new promising synthetic antimicrobial agents.  相似文献   

9.
Candida dubliniensis was reported as a new species in 1995. This species is often misidentified as Candida albicans. The aims of this work were to determine the occurrence of C. dubliniensis in various clinical materials, to evaluate several ways to identify it and to examine the genetic variability of isolates. Among 7706 isolates originally identified as C. albicans, 237 were identified as C. dubliniensis (3.1%). Most of the C. dubliniensis isolates were obtained from the upper and lower respiratory tract (61.4 and 22.9%). Five phenotypic methods including latex agglutination were used (cultivation on CHROMagar Candida, on Staib agar, at 42 °C and in medium with 6.5% NaCl), but only cultivation on the medium with an increased concentration of NaCl and latex agglutination gave reliable results. Species-specific polymerase chain reaction was used as the confirmation method. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry provided less reliable results. In fact, 78.9% of C. dubliniensis isolates had scores above 1.7. However, the rest of them (21.1%) were also identified as C. dubliniensis even when the scores were lower than 1.7. Divergences among C. dubliniensis strains were evaluated by means of pulsed-field gel electrophoresis. Eighty-six selected C. dubliniensis isolates showed a 69.6% level of similarity. The results of this study expand the knowledge of the incidence, means of identification and genotypic divergence of C. dubliniensis isolates.  相似文献   

10.
Candida albicans is the most common pathogen that causes balanoposthitis. It often causes recurrence of symptoms probably due to its antifungal resistance. A significant number of balanitis Candida albicans isolates are resistant to azole and terbinafine antifungal agents in vitro. However, balanoposthitis caused by fluconazole- and terbinafine-resistant Candida albicans has rarely been reported. Here, we describe a case of a recurrent penile infection caused by fluconazole- and terbinafine-resistant Candida albicans, as well as the treatments administered to this patient. The isolate from the patient was tested for drug susceptibility in vitro. It was sensitive to itraconazole, voriconazole, clotrimazole and amphotericin B, but not to terbinafine and fluconazole. Thus, oral itraconazole was administrated to this patient with resistant Candida albicans penile infection. The symptoms were improved, and mycological examination result was negative. Follow-up treatment of this patient for 3 months showed no recurrence.  相似文献   

11.
Yeasts frequently colonize non-sterile sites in the body. The aim of the study was to determine distribution in clinical samples and antifungal susceptibility to five antifungals. From January 2013 through June 2015, 800 isolates were obtained from intensive care unit patients. Candida albicans (58.9%), Candida glabrata (20.4%), Candida krusei (8.6%), and Candida parapsilosis (3.6%) were the leading species. Majority of the C. albicans isolates were susceptible to the fluconazole. Elevated voriconazole minimal inhibitory concentrations (MICs) were observed in isolates exhibiting high fluconazole MICs, most frequently in C. glabrata. Isolates with echinocandins MICs suggesting reduced susceptibility were only sporadic cases with the exception of Trichosporon spp. The amphotericin B MICs were slightly higher for some C. krusei.  相似文献   

12.
Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV–visible spectrophotometer, and transmission electron microscope. The UV–Vis spectroscopy revealed the formation of AgNPs at 400–450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains.  相似文献   

13.
Yeast–mold mycobiota inhabit several natural ecosystems, in which symbiotic relationships drive strategic pathoadaptation. Mycotoxins are metabolites produced by diverse mycotoxigenic fungi as a defense against yeasts, though at times yeasts secrete enzymes that degrade, detoxify, or bio-transform mycotoxins. The present study is focused on the in vitro inhibitory effects of zearalenone (ZEN), a F2 mycotoxin produced by several Fusarium and Gibberella species, on different microbial strains. ZEN exhibited no effect on the planktonic growth or biofilms of several Gram positive and negative bacteria at the tested concentrations. Remarkably, Candida albicans biofilm formation and hyphal morphogenesis were significantly inhibited when treated with 100 µg/mL of ZEN. Likewise, ZEN proficiently disrupted pre-formed C. albicans biofilms without disturbing planktonic cells. Furthermore, these inhibitions were confirmed by crystal violet staining and XTT reduction assays and by confocal and scanning electron microscopy. In an in vivo model, ZEN significantly suppressed C. albicans infection in the nematode Caenorhabditis elegans. The study reports the in vitro antibiofilm efficacy of ZEN against C. albicans strains, and suggests mycotoxigenic fungi participate in asymmetric competitive interactions, such as, amensalism or antibiosis, rather than commensal interactions with C. albicans, whereby mycotoxins secreted by fungi destroy C. albicans biofilms.  相似文献   

14.
Nodule samples were collected from four alder species:Alnus nepalensis, A. sibirica, A. tinctoria andA. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. A total of 21 restriction patterns were obtained. TheFrankia population in the nodules ofA. nepalensis had the highest genetic diversity among all fourFrankia populations; by contrast, the population in the nodules ofA. mandshurica had the lowest degree of divergence; the ones in the nodules ofA. sibirica andA. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated thatFrankia strains fromA. sibirica andA. tinctoria had a close genetic relationship.Frankia strains fromA. nepalensis might be the ancestor ofFrankia strains infecting otherAlnus species. From these results and the inference of the ages ofAlnus host species, it is deduced that there was a co-evolution betweenAlnus and its microsymbiontFrankia in China.  相似文献   

15.
16.
Amphotericin B (AmB) is one of the most used drugs for the treatment of systemic fungal infections; however, the treatment causes several toxic manifestations, including nephrotoxicity and hemolytic anemia. Chitosan-coated poly(lactide-co-glycolide) (PLGA) nanoparticles containing AmB were developed with the aim to decrease AmB toxicity and propose the oral route for AmB delivery. In this work, the antifungal efficacy of chitosan-coated PLGA nanoparticles containing AmB was evaluated in 20 strains of fungus isolates from patients with vulvovaginal candidiasis (01 Candida glabrata and 03 Candida albicans), bloodstream infections (04 C. albicans and 01 C. tropicalis) and patients with urinary tract infection (04 Candida albicans, 02 Trichosporon asahii, 01 C. guilhermondii, 03 C. glabrata) and 01 Candida albicans ATCC 90028. Moreover, the cytotoxicity over erythrocytes was evaluated. The single-emulsion solvent evaporation method was suitable for obtaining chitosan-coated PGLA nanoparticles containing AmB. Nanoparticles were spherical in shape, presented mean particle size about 460 nm, positive zeta potential and encapsulation efficiency of 42%. Moreover, nanoparticles prolonged the AmB release. All the strains were susceptible to plain AmB and nanostructured AmB, according to EUCAST breakpoint version 8.1 (resistant > 1 μg/mL), using broth microdilution method. In C. albicans (urine, blood, and vulvovaginal secretion isolates, and 1 ATCC), the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.5 μg/mL. In urine and vulvovaginal secretion isolates of C. glabrata, the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.015 μg/mL. In urine isolates of C. guilhermondii, the MIC value of AmB-loaded nanoparticles was 0.12 μg/mL and EUCAST was 0.06 μg/mL. In blood isolates of C. tropicalis, the MIC value of AmB-loaded nanoparticles was 0.5 μg/mL and EUCAST was 0.25 μg/mL. Finally, in urine isolates of T asahii, the MIC value of AmB-loaded nanoparticles was 1 μg/mL and EUCAST varied from 0.5 to 1 μg/mL. In the cytotoxicity assay, plain AmB was highly hemolytic (100% in 24 h) while AmB-loaded chitosan/PLGA nanoparticles presented negligible hemolysis.  相似文献   

17.
In this work, antimicrobial peptides from Cuminum cyminum L. seeds were isolated and purified for the first time by 50% ethanol extraction, C18 reverse phase column chromatography and ion exchange chromatography for separation different peptides fraction. Then isolated fractions were characterized by Gel electrophoresis (SDS-PAGE), high-pressure liquid chromatography and the peptides components and molecular weights were determined by liquid chromatography and mass spectrometry. The extracts were tested against some strains of bacteria (E. coli and Staphylococcus aureus) and one strain of fungi (Candida albicans) using well diffusion and broth dilution assays. The extracts from C. cyminum L. seeds demonstrated a high degree of activity (some antibacterial effect) against the bacteria strains and аntifungal activity against the Candida albicans. However, the study indicates that the crude peptide extracts from C. cyminum L. seeds have promising antimicrobial and antioxidant activities that can be harnessed as leads for potential bioactive compounds.  相似文献   

18.
In this study, three marine algae collected from western coast of algerian mediteranean sea (Ulva lactuca, Dictyota dichotoma, and Corallina elongata) were tested using the agar-well diffusion method for their production of antibacterial and antifungal agents on various organisms that cause diseases of humans and plants (Eschirichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Salmonella sp, Candida albicans, and Penicillium sp.). The total phenol content and antimicrobial activity were determined using different crude seaweeds extracts (methanol, diethylether, and chloroform). The results show that the chloroform extracts of (Ulva lactuca and Corallina elongata) had the highest activity against E. coli and Salmonella sp. The methanol extract obtained from (Ulva lactuca, Dictyota dichotoma, and Corallina elongata) showed antifungal activity for Candida albicans. The results of the study revealed that the seaweeds from Algeria appear to have immense potential as a source of antibacterial and antifungal compounds; they can be used in treating diseases caused by these organisms.  相似文献   

19.
The antifungal activity of Solanum melongena leaf, extracted with petroleum ether, chloroform, methanol and water was evaluated against three human pathogenic dermatophytes namely Trichophyton mentagrophytes, T. rubrum and T. tonsurans and two opportunistic fungi Candida albicans and Trichosporon beigelii. Maximum yield of plant components was 4.32 g, extracted in water and minimum 1.07 g in petroleum ether from 150 g of dry plant material. Except water extract, all the extracts possessed significant antifungal property. All the test pathogens showed highest sensitivity towards chloroform extract, exhibiting maximum inhibition zone diameter of 50.0 mm in T. mentagrophytes and minimum 30.0 mm in C. albicans at 2 × 105 μg/ml concentration. Chloroform extract at lower concentration 2.5 × 104 μg/ml was inhibitory for all the test pathogens, exhibiting inhibition zone diameter 21.0 mm against T. tonsurans and 15.0 mm against C. albicans and T. beigelii. The activity of the different solvent extracts against the test pathogens in terms of inhibition zone diameter in decreasing order was as followsChloroform extract > Petroleum ether extract > Methanol extract for T. mentagrophytes, T. rubrum and T. tonsurans.Chloroform extract > Methanol extract > Petroleum ether extract for C. albicans and T. beigelii.  相似文献   

20.
Fluoroquinolines are broad spectrum fourth generation antibiotics. Some of the Fluoroquinolines exhibit antifungal activity. We are reporting the potential mechanism of action of a fluoroquinoline antibiotic, moxifloxacin on the growth, morphogenesis and biofilm formation of the human pathogen Candida albicans. Moxifloxacin was found to be Candidacidal in nature. Moxifloxacin seems to inhibit the yeast to Hyphal morphogenesis by affecting signaling pathways. It arrested the cell cycle of C. albicans at S phase. Docking of moxifloxacin with predicted structure of C. albicans DNA Topoisomerase II suggests that moxifloxacin may bind and inhibit the activity of DNA Topoisomerase II in C. albicans. Moxifloxacin could be used as a dual purpose antibiotic for treating mixed infections caused by bacteria as well as C. albicans. In addition chances of developing moxifloxacin resistance in C. albicans are less considering the fact that moxifloxacin may target multiple steps in yeast to hyphal transition in C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号