首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pomocí kapilárniho diferenciálního mikrorespirometru podle Grunbauma, Siegela, Schuxtze a Kirka jsme stanovili hodnoty respiracniho kvocientu vzrostných vrchol? p?enice,Triticum aestivum L., kultivar Chlumaeká 12 ve t?ech etapách organogeneze. V 2. etapě orga-nogeneze, ozna?ujíci ?istě vegatativni vzrostné vrcholy, je hodnota RQ v?dy vy??í ne? 1. V pr?běhu 3. etapy, v době zakládání brakteí RQ, klesá na hodnoty kolem 1 a stejnou hodnotu nacházíme té? v dal?i etapě, d.obě zakládáni kláskových primordii. Tento nález potvrzuje na?i d?ivěj?í domněnku, vyplývajíci ze studia respira?ního metabolismu vzrostných vrchol? p?enice o torn, ?e v 2. etapě organogeneze probíhá ?áste?ná aerobni glykolýza, která v pr?běhu dal?iho vývoje p?echázi v aerobni respiraci.  相似文献   

2.
Metodikou fotoperiodických pokus? a analys vzrostných vrchol? jsme zjistili závislost typu výsledné morfologické abnormity na vývojovém stupni vzrostného vrcholu p?ed fotoperiodickým zásahem. Abnormálně velký po?et klásk? vznikal po zásahu u rostlin se zcela vegetativním vzrostným vrcholem. K větvení klasu do?lo nejvíce po zásahu v době prodlu?ování vzrostného vrcholu. Abnormální vývin podp?rných listen? odpovídal zásahu mezi zakládáním klásk? a zakládáním kvítk? v kláscích. ?ím d?ívěj?i byl tento zásah, tím ú plněji byly podp?rné listeny vyvinuty. První dvě odchylky p?edstavují nadpo?etný r?st osních ?lánk? v květenství, vývin podp?rného listenu je známkou posunutí korelace mezi r?stem listenu a generativním vývojem jeho ú?labního klásku. U poslední odchylky, ?ídkého klasu, která vzniká po zásahu v době zakládání ty?inek, ji? nedochází k takovému naru?ení vztahu mezi r?stem a vývojem. P?i fotoperiodickém zásahu dochází k indukci abnormální morfogenese, která pak m??e probíhat i po ukon?ení zásahu.  相似文献   

3.
Ve fotoperiodických pokusech s jarní p?enicí Niva jsme sledovali pr?běh fotoperiodické citlivosti a umístění období fotoperiodieké reakce v ontogenesi rostlin. Nepoda?ilo se nám u této dlouhodenní rostliny najít takové období, během něho? by zkrácený den v?bec neměl vliv na rychlost vývoje. Některé údaje v?ak nazna?ují, ?e m??eme vymezit období zvý?ené fotoperiodieké citlivosti, které by odpovídalo období fotoperiodieké reakce u krátkodenních rostlin. Výsledky nasvěd?ují rovně? tomu, ?e toto období nekon?í náhle, nýbr? postupně p?echází v následující období, kdy délka dne p?sobí na rychlost vývoje ji? jen prost?ednietvím fotosynthesy. Tento vliv je dob?e; patrný p?i pou?ití takových indikátor? jako je vývoj vzrostného vrcholu a metání. Existenci p?echodného období na konci období zvý?ené fotoperiodieké citlivosti a jeho souvislosti s fází vzrostného vrcholu od zakládání klísk? do zakládání ty?inek je t?eba ově?it dlouhodobím pokusem v p?ísně regulovatelních podmínkách. Z metodik sledování pr?běhu fotoperiodieké citlivosti se u na?eho pokusného materiálu nejlépe osvěd?ilo metání, které poskytlo k?ivky s ur?itými, více nebo méně z?etelnými zloniy, a také sledování abnormit (p?i klasickém uspo?ádání pokusu), které indikují naru?ení vztahu mezi r?stem a vývojem. Orienta?ní údaje poskytlo rovně? mě?ení délky rostlin u klasického uspo?ádáni pokusu. Nejméně spolehlivé byly v na?ich pokusech analysy vývojového stavu vzrostného vrcholu.  相似文献   

4.
P?i prohlí?ení svého bohatého materiálu mixoploidních ko?enových vrchol? nalezl jsem ko?eny, které, jak se zdálo, se zbavovaly polyploidních sektor? tím, ?e se roz?těpily v ?ást diploidní a polyploidní. Od?těpení polyploidních provazc? jsou sice dosti ?astá, ale v p?ípadech zde popsaných vytvá?í diploidní sektor nový ko?enový vrchol, polyploidní zastaví pozvolna sv?j r?st, kde?to nově rozli?ený vrchol roste dále. Také to je ur?itý zp?sob samo?i?tění a diploidisace mixoploidního vrcholu. P?edpokladem ov?em je ?e se vrchol skládal p?vodně asi z poloviny nebo více z buněk diploidních, ve druhé ?ásti polyploidních. Potom dojde ve vrcholovém meristému diploidní ?ásti k diferenciaci samostatného diploidního vrcholu, kde?to polyploidní vrcholová ?ást pozvolna nebo náhle dělení svých buněk zastaví, po nějakou dobu se prodlu?uje a kone?ně je roztrhána a odum?e. Mohl jsem některé p?ípravy k samo?těpení v poměrně raných stadiích pozorovat.  相似文献   

5.
Pomocí volumetrického mikrorespirometru (podleZurzyckého) jsme sledovali intensitu dýchání vzrostných vrchol? ozimé p?enice ve t?ech etapách organogeneze, zachycujících p?echod z vegetativního do generativního stavu. Nízká intensita dýchání ve v?ech pou?itých kritériích (na jeden vrcholek, na jednotku su?iny i bílkovinného dusíku) byla nalezena ve 2. a 3. (vegetativní) etapě, vy??í ve 4. (generativní) etapě. Zji?těné rozdíly jsou pravděpodobně spojeny s anatomickými změnami vzrostných vrehol? během diferenciace. Jde zejména o vzr?stající podíl prodlu?ující se centrální d?eňové ?ásti a o diferenciaci laterálních pupen? spojenou s nástupem 4. etapy. P?edpokládáme, ?e tyto změny jsou spojeny s květní indukei pouze nep?ímo a ?e spí?e odrá?ejí celkovou p?estavbu apikálního meristému v pr?běhu ontogenese.  相似文献   

6.
Některé mixoploidní ko?eny bob? (Vicia faba), získané ú?inkem chloralhydrátu, se dichotomicky větví. Výzkumem ko?enových vrchol? se objevilo, ?e dichotomie se děje v ko?enech, které obsahují v mediáně svého transverzálního meristému pruh nebo provazec polyploidních buněk. Po obou jeho stranách se organizují nové iniciály obou ko?enových vrchol?. Poněvad? mohou v mixoploidních vrcholech polyploidní buňky p?sobit v meristému jako cizí stavební elementy, lze tuto dichotomii vylo?it jako následek p?eru?ení nebo poru?ení korelace mezi iniciálami p?vodního ko?enu. Tato porucha korelace je podobná p?eru?ení korelace zp?sobené vedením mediáního zá?ezu do meristému ko?enového vrcholu. V některých dichotomicky se větvících ko?enech (v tzv. korálovitých ko?enech rostlin cykasovitých) a v baktériových hlízách druhuElaeagnus argentea byly sice nalezeny velké buňky v mediáně le?ící, ty v?ak, soudě podle velikosti jader, nebyly polyploidní. Nele?í-li polyploidní buňky v mediáně transverzálního meristému, m??e se ko?enový vrchol roz?těpit ve dvě nestejně silné ?ásti, z nich? jedna roste dále, druhá slab?í v?ak sv?j r?st d?íve nebo později zastaví.  相似文献   

7.
Nalézají-li se polyploidní buně?né provazce nebo sektory na periférii ko?enového vrcholu, mohou jejich iniciály zastavit své dal?í dělení a polyploidní tkáň m? ? ezrosolovatěním a rozpu?těním hrani?ních blan být od vrcholu odlou?ena. Je to pochod chorize, který je obdobný odlupování buně?ných vrstev postranní ko?enové ?epi?ky. V mixoploidních vrcholech jsou odlu?ovány polyploidní provazce nebo sektory, které jenom někdy obsahují té? několik vtrou?ených ?ad diploidních buněk. Tento odlu?ovací pochod m??e p?ispět podstatně diploidizaei mixoploidních ko?enových vrchol?. Méně ?asto m??e vrchol obsahující vět?inu polyploidních buněk, zvlá?tě kdy? zaujímají plerom, odlou?it periferní diploidní buně?né vrstvy, ?ím? se m??e stát ?isté polyploidním. I v p?írodě m??e takovým pochod?m docházet, nebo? vněj?í ?initelé snadno mohou v ko?enech vyvolat vznik polyploidních buněk. Polyploidní buňky p?sobí -nejspí?e hmotně - jako cizí elementy na zápoj v buňkách diploidních.  相似文献   

8.
Pomocí tkáňových kultur in vitro byla studována proliferace kambia a parenchymu větví 34 druh? d?evin. Byla sledována tvorba kalusu, sezónní aktivita kambia, vliv kyseliny β-indolyloctové na reaktivaci kambia a polarita tvorby kalusu. R?zné druhy d?evin se vyznaěují r?znou schopností vytvá?et kalus; u vět?iny druh? v?ak v kultu?e in vitro dochází k reaktivaci kambia. Některé druhy sou?asně s reaktivací kambia tvo?í kalus z korové a d?eňo ?ásti větví a lenticel. R?st kalus? byl největ?í v zimě, dostate?ně intensivní na ja?e do ra?ení pupen?, později prudce klesal. Během léta intensita r?stu opět vzr?stala a na podzim se p?ibli?ovala zimní úrovni. Některé druhy se vyzna?ují stejně intensivní proliferací kambia po celý rok. Kyselina β-indolyloctová, jako sou?ást kultiva?ního media, měla r?zný vliv na r?st kalus? sledovaných druh?. ?ada druh? zakládala v kalusových pletivech meristematická ohniska, ze kterých se tvo?ily ko?eny (?astěji na p?dách s kyselinou β-indolyloctovou) nebo pupeny a osy. Poloha ?ízk? na p?dě (apikálním koncem nahoru nebo dol?) neměla znatelný vliv na polaritu p?i tvorbě kalusového pletiva. Některé druhy tvo?ily kalusové pletivo na obou koncích ?ízk?.  相似文献   

9.
Ji? d?íve zji?těné (Slavík 1959a) rozlo?ení hodnot osmotického tlaku buně?né ?távy na plo?e listové ?epele dvoudělo?ného typu (apex >base, okraj > centrální ?ást), nezávislé na vodní bilanci a nezměněné i p?i nulovém deficitu difusního tlaku (DPD)in situ bylo doplnéno dal?ím sledováním fysiologické heterogenity listové ?epele u dospělých list?Nicotiana sanderae hort., p?edev?ím hlavních indikátor? vodního provozu a výměny CO2. Intensita transpirace s intaktního povrehu list?, vypo?tená z vá?kových mě?ení na discích, vyseknutých z ?epele, je v apikální ?ásti o 50 a? 70%, ni??í ne? na basi. Rovně? p?irozený trvalý vodní deficit, stanovený diskovou metodou (?atský 1960), byl v apikální ?ásti o 10% ni??í ne? na basi. Hustota pr?duch? byla jak uNicotiana sanderae, tak u dal?í pokusné rostliny u cukrovky v apikální ?ásti pr?měrně o 40% ni??í, zatím co velikost pr?duch? byla v apikální ?ásti naopak pr?měrně o 30% vět?í. Relativní index plochy pr?duchových skulin na plochu ?epele (po?et × ?tverec délky na svrchní plus spodní straně) se na obou místěch pr?kazně neli?il. Intensita fotosynthesy (na plochu), mě?ená gazometricky infra?erveným analysátorem, byla p?i plném nasycení pletiva vodou v apikální ?ásti pr?kazně o 17% ni??í ne? v ?ásti basální, a?koliv obsah chlorofylu na plochu je v tlust?í, apikální ?ásti vět?í. Rovně? intensita dýchání, manometricky mě?ená jako QO2, byla v apikální ?ásti pr?kazně ni??í, a to jak v p?epo?tu na su?inu (o 12%), tak na plochu. Podobné, av?ak podstatně men?í rozdíly byly zji?těny také mezi okrajem a centrální ?ástí ?epele. Fysiologická heterogenita listové ?epele je kauzálně zalo?ena na r?zné hydrata?ní úrovni, tak?e studium aktivity r?zných fysiologických proces?, na r?zných místech ?epele je vhodné pro sledování jejich vztahu k r?zné úrovni hydratace.  相似文献   

10.
Chloralizujeme-li klíoní koren bobu (Vicia jaba L.) nekolikrát po sobě, vznikne v zevní vrstvě pleromu a ve vnitrní periblemu mnoho polyploidních buněk, které tvoíí nepravidelnou mozaiku, z ní? vznikne transverzální meristem postranních mixoploidních koren?. Na vzniku ka?dé z nich ú?astní se nékolik, pr?měrně asi 30 buněk, a jejich ?inností probíhá ko?enem vedle diploidních. je?tě několik polyploidních provazcú nebo sektor?. Iniciály postranních ko?en? mohou p?sobit dvoustranně jako kambium nebo jednostranně, oddělujíce buňky bud jen pro ?epi?ku nebo jen pro vlastní ko?en. Na zalo?ení postranních ko?enú se v chlorali-zovaných hlavních ko?enech m??e ú?astnit několik vrstev buně?n?ch. Během vývoje mixoploidních ko?en? m??e být některá vrstva iniciál nahrazena vrstvou s ný sousedícý, ?ím? m??e být zastaven práb?h núkterého provazce nebo sektoru ve vrcholu ko?enovém. Diploidní a mixoploidní tkáň m??e se jevit na p?ícném pr?rezu ko?enem velmi nepravidelně rozdělenou. P?esto mohou mít mixoploidní ko?eny zevní tvar v celku normální, nepravidelnosti vznikají vylu?ováním polyploidních ?eber z dal?ího vývoje ko?en? nebo u plomen eutelických a amorfních. V ko?enech, v nich? jsou polyploidní buňky v men?ině, p?sobí jako cizí elementy a jsou pozvolna rozmanitým zp?sobem z dal?iho vývoje vrcholu vylucovány. V ko? enu se děje jaké si samo?istě ní, které m? The current version does not support copying Cyrillic text to the Clipboard. je v?ak pravdě podobno, ?e ve vrcholech, které se skládají z velké vě t?iny buněk polyploidních, m??e probíhat pochod opa?ný vedoucí k úplné jejich polyploidisaci.  相似文献   

11.
Zkou?eli jsme vliv některých inhibitor? glykolýzy a dýchání na odbourávání volných glycid? a na mno?ství zplodin kva?ení ve vegeta?ních vrcholech p?enice,Triticum aestivum L., kultivar Chlumecká 12. Analýzy jsme prováděli ve 3 etapách organogeneze v 2. (vegetativní období), 3. (období fotoperiodické indukee) a 4. (po?átek zakládání květních orgán?) etapě organogenese. Izolované vegeta?ní vrcholy byly inkubovány ur?itou dobu v roztocích inhibitor? ve fosfátcitrátovém ústoji. Volné glycidy jsme stanovili metodou nátla?kové chromatografie a zplodiny kva?ení modifikovanou jodoformovou reakcí. DNP a azid zpomalily v pou?itých koncentracích odbourávání glycid? ve v?ech zkou?ených etapách organogeneze. Kyselina monojodoctová, NaFa Na-malonát měly tentý? ú?inek jen ve 3. a 4. etapě. V 2. etapě se odbourávání glycid? ú?inkem těchto inhibitor? urychlilo. Vlivem DNP se zmen?ilo mno?ství zplodin kva?ení ve v?ech etapách organogeneze. Mno?ství těchto látek nebylo ovlivněno malonátem a toté? platí pro kyselinu monojodoctovou a NaF ve 3. a 4. etapě organogeneze a pro azid ve 2. etapě. Azid ve 3. a 4. etapě někdy vedl ke zvý?ení mno?ství zplodin kva?ení, kyselina monojodoctová a Na-fluorid zp?sobily jejich pokles ve 2. etapě. Výsledky diskutujeme z hlediska mo?ného vysvětlení p?sobení jednotlivých inhibitor?. Vět?ina inhibitor? měla jiný ú?inek ve 2. etapě organogeneze ne? v dal?ích etapách. To se shoduje s d?ívěj?ím zji?těním, ?e u vegeta?ních vrchol? je v pr?běhu 3. etapy organogeneze nahrazeno kva?ení aerobními oxydázovými systémy.  相似文献   

12.
U 100 a? 120denných rostlin krmné kapusty a ?epky byly sledovány rozdíly v dynamice vzniku a dal?ího vývoje momentálního vodního deficitu (VD) u r?zně starých list?. VD byl stanovován ter?íkovou metodou s extrapolaí dosycovací k?ivky do po?átku (?atský 1962b). U list?, oddělených od rostliny a vadnoucích bez p?ísunu vody, je VD nejvy??í u mladých a nejni??í u starých list?, tedy v podstatě odpovídá rozdíl?m v intensité transpirace. P?i od?íznutí celé rostliny vadnou listy r?zného stá?í v podstatě stejnou intensitou. V pozděj?ích fázích vadnutí byly v některých pokusech stanoveny mírně vy??í hodnoty VD starých list?. P?i pomalém vadnutí rostliny in situ, indukovaném sni?ováním p?dní vlhkosti, byla po?ínaje st?edními hodnotami VD, tj. pr?měrně od 8 a? 20 % stanovena velmi z?etelná preference mladých list? v zásobování vodou. P?i celkovém nedostatku vody v rostlině nejprve silně vadnou a později odumírají starí a dospělé listy; VD mladých list? se dlouho udr?uje na poměrně nízkých hodnotách. Tento pr?běh vadnutí rostliny in situ byl stanoven jak p?ímým mě?ením VD, tak i nep?ímo stanovením poklesu procentuálního obsahu vody v listech. Na zji?těné preferenci mladých list? v zásobování vodou se uplatňuje i translokace vody do mladých list? z vadnoucích list? star?ích.  相似文献   

13.
Je uveden vývoj květních pupen? jabloní od jejich vzniku na branchyblastech a? do doby krátce p?ed vykvetením. Celé období vývoje je mo?né rozdělit do ?ty? hlavních fází: I. fáze je vegetativní, v ní? vznikají na vzrostném vrcholu primordia krycích ?upin. II. fáze zahrnuje morfologiekou diferenciaci vzrostného vrcholu, p?i ní? se vytvá?ejí primordia květ?. III. fáze zahrnuje vznik kvě tních orgán?. IV. fáze je kvetení.  相似文献   

14.
Autor studoval v pr?běhu dvou let osmotický tlak 70 strom? 7 odr?d jabloně, ze kterých 5 odr?d plodí periodicky a 2 ka Edoro?ně. Na za?átku pokusu polovina strom? byla bez plod? a polovina s násadou plod?. Pokus byl proveden na 10 a? 121et ch stromeoh (podno? M II, M IX a M IV) v severozápadni jabloňárské oblasti ?ech (St?í?ovice, Těchobuzice). 3 a? 4krát za vegeta?ni období byly odebirány listy brachyblast? plodíoích a odpo?ívajících jabloní a stanoven osmotický tlak jejich buně?né ?távy, jako? i její elektrická vodivost. Jednou za sezónu byly odebrány terminálni pupeny brachyblast?, z kterých oby?ejně vznikaji květní pupeny, a zpraeovány stejně jako listy. Ze získaných ?daj? plyne, ?e rostouci plody jsou p?í?inou sni?ení osmotického tlaku buně?né ?távy list? jabloně 2 a? 6 atmosfér v závislosti od mno?stv? násady a období. Toto sni?ení málo závisí na po?asi a rozdíly v osmotickém tlaku buněcné ?távy jabloní plodíeích a odpo?ívajících jsou v ?ervenci vysoce pr?kazné. Osmotický tlak buně?né ?távy pupen? je sni?ován méně: 1 a? 2 atmosféry. Byla nalezena pr?kazná kladná korelace mezi hodnotou osmotického tlaku odrüdy Boskoopské ?ervené a zakládáním květnich pupen?. U ka?doro?ně plodíeích odr?d taková korelace nebyla pozorována.  相似文献   

15.
V práci byl sledován vliv p?edplodin lnu, ?ita, máku a ho??ice na následné plodiny tého? nebo jiného druhu p?i bezprost?edním vysévání po sobě a p?i vysévání v r?zně dlouhých ?asových intervalech s odstupňovanou délkou odpo?ívání zeminy. Pokusy byly prováděny v nádobách naplněných kompostovou zeminou, které byly umístěny na pokusné zahradě. Byl hodnocen r?st p?edplodiny a následné plodiny stanovením su?iny nadzemních ?ástí a ko?en?. Během r?stu následných rostlin byly odebírány vzorky zemin, v nich? byl stanoven obsah fyziologicky p?istupného dusíku, fostoru a draslíku. V?echny ?ty?i pou?ité p?edplodiny p?sobily pr?kazné změny v r?stu následných rostlin. Len a mák pěstované jako p?edplodiny p?sobily na následné rostliny lnu a cukrovky prost?ednictvím p?dních autopatických ?i allelopatických faktor?. Ú?inek ?ita jako p?edplodiny na ?ito a ho??ice na je?men byl méně výrazný. Z výsledk? se nedá v posledních dvou p?ípadech p?ímo usuzovat na p?ítomnost autopatických nebo allelopatických faktor?. P?i bezprost?ední kultivaci následných rostlin v zemině po p?edplodině bez odpo?ívání byla zji?těna jen inhibice r?stu. Pokusy s odstupňovanou délkou odpo?ívání zeminy dávají mo?nost zachytit celou ?kálu r?stových změn následných rostlin od inhibice ke stimulaci. Ú?inek p?edplodiny na následnou plodinu se zna?ně měnil s délkou odpo?ívání zeminy po p?edplodině. Změny r?stu následných rostlin nekorelovaly—kromě pokusu s ?item a ?áste?ně s ho??icí—se změnami v obsahu sledovaných ?ivin, ani s mno?stvím narostlé p?edplodiny.  相似文献   

16.
KmenyAspergillus amstelodami No. 5,A. chevalieri A 24 aA. ruber No. 71 byly pasá?ovány po 21 generací pomocí monokonidiové isolace na sladinové p?dě a na Czapkově p?dě s 20% sacharosou. Bylo pozorováno postupné zvy?o?ování tvorby konidií, r?zně na obou p?dách. Nedo?lo ke sní?ení tvorby perithecií nebo jejich vymizení. U kmen?A. amstelodami No. 5 na sladinové p?dě aA. ruber No. 71 na Czapkově p?dě se sacharosou vznikly celkem t?i morfologické změny, charakterisované p?edev?ím zpomaleným r?stem a zpo?děnou diferenciací v prvních dnech inkubace a reversibilitou k p?vodnímu fenotypu u některých kolonií v dal?ích generacích. U kmeneA. chevalieri A 24 se na sladinové p?dě objevily dvě rozdílné fenotypové změny, je? jsou charakteristické a stálé. Vyzna?ují se, mimo jiné morfologické znaky, té? zpomaleným r?stem a zpo?děnou diferenciací v prvních dnech inkubace. Tyto výsledky jsou srovnávány s pokusyJinkse (1954, 1956) a diskutován p?vod pozorovaných změn a vliv p?d. U reversibilních změn lze usuzovat, ?e jsou mimojaderného p?vodu, nebot je mo?no s velkou pravděpodobností vylou?it změny podmíněné mutacemi genomu a segregací jader následkem heterokaryose. U změn, u nich? k reversi nedochází, není jejich p?vod jasný. Zvý?ená sporulace je p?ipisována změnám v cytoplasmě.  相似文献   

17.
Modelové zachycení r?stových porměr? u vy??ích rostlin p?edpokládá mo?nost ozna?ení celého pletiva odvozeného z jedné ur?ité buňky. Za takové ozna?ení lze pova?ovat nap?. ?odmí?ení” (Entmischung) heterogenních plastid? z jedné buňky, polyploidizaci jednotlivých buněk a z nich' odvozených pletiv, stejně jako indukei mutací nap?. pomocí Roentgenova zá?ení. Jestli?e v posledně uvedeném p?ípadě mutuje, ?ekněme, jedna iniciála L II, pak vykazuje ur?itá ?ást sporogenních pletiv tuté? mutaci Za p?edpokladu, ?e neprobíhá eliminace buněk, odpovídá tato ?ást v pr?měru poměru mutované iniciály L H k po?tu zbylých iniciál L II, uplatňujících se na dal?ím vývoji. Model, odvozený z této skute?nosti a z dal?ích p?edpoklad?, uvedených v textu této práce, podává p?edev?im informaci o o?ekávané ?etnosti mutací a ?těpných poměrech v samosprá?eném potomstvu mutovaných rostlin. Ze srovnání se zji?těnými daty vyplývá, ?e pro vyjád?ení těchto poměr? u odno?í je?mene vysta?í relativně jednoduchý model. Jeho základem je p?edpoklad, ?e iniciály p?e?ívají jedna na druhé stochasticky nezávisle a náhodně, a zároveň náhodně mutují. P?itom není nutno u zkoumaných postranních odno?í uva?ovat eliminaci p?vodních iniciál. U hrachu jsou tyto poměry komplikovaněj?í jak ve vztahu k rozdělení ?etnosti mutací, tak ve vztabu k ?těpným poměr?m. Dosud je známe pouze obecně pro celé rostliny tohoto druhu nikoliv v?ak pro jednotlivá květenství. K jejich objasnění je t?eba p?edpokládat, ?e během r?stu probíhá na ur?itých místech eliminace jednotlivých buněk, zodpovědných za tvorbu sporogenních pletiv. Výzkum na tomto modelu není v?ak dosud ukon?en.  相似文献   

18.
Dekapitované klíění rostliny lnu a hrachu, nat?ené pastou s trijodbenzoovou kyselinou bud nad dělohami nebo pod nimi, jeví zvlá?tě na epikotylních pahýlech rozdílné morfogenetické změny v souvislosti, s rozdílnými korela?ními vlivy jejich epigeických, resp. hypogeických děloh, je? primárně rozhodují o rozdílné dominanci jejich pupenových základ?. V nejraněj?ím období klí?ení lze prvního internodia lnu, oby?ejně velmi krátkého, a ?apík? děloh hrachu u?ít k d?kazu antagonismu mezi kyselinou trijodbenzoovou a indolyloctovou. První internodium lnu se prodlou?ilo p?sobením trijodbenzoové kyseliny na semena, i kdy? zrála na rostlině, a ?apíky děloh hrachu, zadr?ené v r?stu má?ením semen v roztoku kyseliny trijodbenzoové, se zvět?ily p?sobením kyseliny indolyloctové zvněj?ku. Tato kyselina naopak ru?í morfogenetické ú?inky trijodbenzoové kyseliny na semena lnu.  相似文献   

19.
R?st pylových lá?ek vyvolává ve ?nělce změny v hladině volnýeh aminokyselin. To bylo prokázáno u alaninu, valinu, leucinu — isoleucinu, serinu, threoninu, kyseliny γ-aminomáselné, asparaginu, kyseliny glutamové a prolinu. Tyto změny se uskute?ňují hlavně v těch ?ástech ?nělky, kde se nalézají pylové lá?ky. P?edev?ím dochází ke zvy?ování hladiny kyseliny γ-aminomáseìné a alaninu a k úbytku kyseliny glutamové. Intensita těchto jev? je mnohem výrazněj?í po opylení kompatibilním ne? v p?íipadě inkompatibilní autogamie. Jejich podstata je vysvětlována na základě p?edpokládaného hlavního směru katabolismu kyseliny γ-aminomáselné a alaninu cestou transaminace s kyselinou α-ketoglutarovou relativním nedostatkem této ketokyseliny. P?i sní?ené hladině glycid? dochází v opylenýoh ?ně1kách k akumulaci asparaginu. V cizoprá?enych ?nělkáeh se zvy?uje jeho hladina podstatně rychleji ne?, po samosprá?ení. Jestli?e je hromadění asparaginu d?sledkem intensivněj?ího prodýchávaní bílkovin p?i nedostatku cukr?, vyplývá z uvedeného stejně jako z p?ede?lé práce (TUPý 1961), ?e pylové lá?ky vyu?ívají z ?nělkového pletiva. substráty pro dýchání a ?e je tento proces omezován p?i jejich inkompatibilitní inhibici. V semenících opylených květ? se zvy?uje ji? v době, kdy pylové lá?ky prorustají ?nělkou, hladina kyseliny γ-aminomáselné a alaninu. Kvantitativně je toto zvý?ení p?ímo závislé na rychlosti r?stu lá?ek dané kompatibilním ?i inkompatibilním charakterem p?ílu?ného opylení.  相似文献   

20.
Autor se zabýval cytologickým zhodnoeením 40 odr?d základního ?eskoslovenského sortimentu hru?ní. Zjistil, ?e 30 odr?d tohoto souboru je diploidních a 10 triploidních. Mimo stanovení chromosomálních po?t? promě?il u v?ech odrud i délku listových pr?duch? a dokázal, ?e je mo?no pomocí tohoto kriteria bezpe?ně odli?it diploidní sorty od odr?d triploidních. Dal?ím rozli?ovacím znakem je u triploidních sort zaostávání chromosom? ve v?eténku béhem anafáze heterotypického dělení. Z provedeného zhodnoeení pr?běhu reduk?ního dělení vyplynuly některě nové poznatky týkají cí se abnormálního pr?běhu meiose u diploidních a triploidních odr?d. Autor nalezl u jednotlivých sort rozdílnou barvitelnost pletiv, která nezávisela na zp?sobu mikrotechnického zpracováni, nýbr? byla p?edev?ím vlastností ka?dé odr?dy. Dále dophiil ôdaje o vý?i klí?ivosti pylu u sort, u nich? dosud nebyla v klimatických podmínkách ?eskoslovenska stanovena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号