首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The elution profiles of Asp-tRNA from unstarved and starved cultures of a relaxed-control (Rel-) strain of Escherichia coli were compared by reversed-phase chromatography. Methionine starvation results in the appearance of several additional species of Asp-tRNA which are not observed with starvation for leucine or histidine. By the criterion of cyanogen bromide-effected shifts in chromatographic elution position, a large portion of the tRNAAsp synthesized in methionine-starved cells lacks the normal Q nucleoside. By the same criterion, virtually all of the tRNAAsp from unstarved, leucine-starved, and histidine-starved cells contain Q. We conclude that methionine starvation prevents the formation of the norma Q nucleoside in Rel- E. coli.  相似文献   

2.
T Thiel 《Journal of bacteriology》1988,170(3):1143-1147
Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent Ki values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.  相似文献   

3.
The progressive effects of aerobic starvation on endogenous and ethanol-linked respiration and pyridine nucleotide reduction have been studied in the yeast Saccharomyces cerevisiae. Three distinct phases of pyridine nucleotide reduction were observed when ethanol was added to unstarved yeast: an initial phase of rapid reduction and accelerating respiration (A); a steady-state phase of reduction with maximal respiration (B); a final phase of rapid reduction at anaerobiosis (C).During the first 5 hr of aeration, the steady-state Phase B was replaced by a phase of slow pyridine nucleotide reduction, while Phases A and C were unaffected. During this period, both endogenous pyridine nucleotide reduction and endogenous respiration decreased sharply.Between 5 and 22 hr of aeration, the endogenous level of reduced pyridine nucleotide declined further, while endogenous respiration remained unchanged. Concurrently, the extent of the Phase A reduction doubled.The addition of ethanol to aerobic, unstarved yeast stimulated a rapid pyridine nucleotide reduction, with further reduction occurring at anaerobiosis. Under anaerobic conditions, the addition of ethanol to unstarved yeast caused little further reduction of pyridine nucleotide. Two hours of starvation decreased the extent of the endogenously supported anaerobic reduction and correspondingly increased the ethanol-induced reduction. These results suggest that, in unstarved yeast, reducing equivalents derived from ethanol under aerobic conditions and those derived from endogenous carbohydrate under anaerobic conditions have access to the same pool of pyridine nucleotide. With starvation, this pool becomes accessible to ethanol-derived (or ethanol-mobilized) reducing equivalents under anaerobic conditions.  相似文献   

4.
Tetrahymena pyriformis was starved in 50 mM Tris-HCl, pH 7.5, at 28 degrees C. The number of cells did not change appreciably under the starvation conditions. Nuclear proteins of unstarved cells and cells starved for 1, 2, 4, and 7 d were analyzed by SDS-polyacrylamide gel electrophoresis. Most of the large amount of nonhistone proteins present in the unstarved cell nucleus disappeared with the starvation time. However, the relative amounts of the high mobility group protein and histones did not change appreciably. On the other hand, a protein with a molecular weight of ca. 16,000 gradually accumulated in the nucleus on starvation. This protein was extracted with 0.25 M HCl, but was not soluble in 0.5 M perchloric acid. The amino acid composition and molecular weight of this protein were similar to those of HMG protein LG-2 of T. thermophila. Some lysyl endopeptidase peptides of this protein were found to have amino acid sequences present in LG-2, thus we tentatively named it an LG-2-like protein.  相似文献   

5.
Feeding dominates copulatory behavior in the few opisthobranchs for which behavioral hierarchies have been established. However, the influence of starvation on the dominant role has not been investigated previously. The present study investigates copulatory activity in the ascoglossan opisthobranch Ercolania nigra (Lemche) subject to varying starvation regimes. Copulatory activity of E. nigra is significantly higher in unstarved animals than in animals starved for 2h, 6h, and 24h. The decrease in copulatory activity is independent of the duration of previous starvation within the range tested (2–24 h). Copulatory behavior dominates feeding behavior in 60–80% of the cases, regardless of the duration of previous starvation. Thus the behavioral hierarchy of E. nigra differs markedly from that of the opisthobranchs previously investigated.  相似文献   

6.
Wei W  Gai Z  Ai H  Wu W  Yang Y  Peng J  Hong H  Li Y  Liu K 《PloS one》2012,7(5):e37457
Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells.  相似文献   

7.
Mouse mammary epithelial cells were plated onto 24-well culture plates (50,000 per well), allowed to attach and serum starved for 24 h. Following serum starvation, DNA synthesis was induced by the addition of 10% fetal calf serum and determined by a 1-h pulse with [3H]thymidine from 17 to 18 h after serum addition. Addition of oligonucleotides antisense to the translation start region of cyclic AMP-dependent protein kinase (kinase A) mRNA inhibited thymidine incorporation into DNA (total or percentage of cells incorporating thymidine, as measured by autoradiography). This inhibition was apparent whether compared to controls with no oligonucleotide addition, sense oligonucleotides, or mismatch oligonucleotides. Enzymatic assays indicated that the antisense oligonucleotides lowered kinase A activity in cells. Time course studies indicated that the inhibition in DNA synthesis was not an artifact of the time at which DNA synthesis was estimated. Long-term (4 day) cultures indicated that effects on induction of DNA synthesis were reflected in long-term cell proliferation.  相似文献   

8.
When CHO-K1 cells are cultivated under choline-deficient conditions, the specific activity of CDP-choline synthetase increases and conversely phospholipid-choline exchange enzyme activity decreases, whereas the other three known enzyme activities related to synthesis of phosphatidylcholine remain unchanged. The changes of the former two enzyme activities take place immediately after removal of choline from the medium. The altered activities readily revert to the control levels upon resupplementation of choline to the starved cell culture. The changes upon choline starvation are sensitive to cycloheximide, while the restoration processes are insensitive to the drug. The activity of CDP-choline synthetase in unstarved control cells is found in both the soluble and membrane fractions. The Km value of the enzyme in the soluble fraction for choline phosphate differs from that in the membrane fraction. Asolectin alters the Km value of the former to a value close to that of the latter and raises its Vmax value, whereas it hardly affects the Km and Vmax values of the latter. In choline-starved cells, the activity is exclusively found in the membrane fraction. The change in the subcellular distribution of the activity upon choline starvation is sensitive to cycloheximide. The altered subcellular distribution reverts to the initial status upon resupplementation of choline even in the presence of cycloheximide. The activity of the phospholipid-choline exchange enzyme is exclusively found in the membrane fraction for both starved and control cells. The properties of the enzyme are altered upon choline starvation with respect to the Vmax value for choline and the Km and Vmax values for Ca2+. These altered kinetic parameters are changed by egg yolk phosphatidylcholine so as to be indistinguishable from those in unstarved control cells. We discuss the mechanism of the alterations in the characters of both enzymes in response to choline starvation.  相似文献   

9.
Bacterial DNA synthesis, as measured by the incorporation of [methyl-3H] thymidine, was examined during conditions of decreasing biomass and non-growth of three heterotrophic marine bacteria. High rates of [3H] thymidine incorporation were recorded during the initial phase of starvation and two strains exhibited a net increase in DNA during the first few hours of starvation. The decreased rate of [3H] thymidine incorporation with the time of starvation, was in agreement with the decrease in the percentage of the total population that showed uptake of labelled thymidine, as seen by a combined autoradiography-epifluorescence technique. It is suggested that new rounds of replications were initiated after cells had been starved for times that well exceeded the time for replication of genomes during growing The initial increase in cell numbers upon transfer of growing cells to a starvation regime was inhibited by nalidixic acid, suggesting that DNA synthesis, rather than an excess of nuclear bodies, allow for the fragmentation process in these strains.  相似文献   

10.
S K Kim  D Kaiser 《Cell》1990,61(1):19-26
During fruiting body development, the product of the csgA gene is necessary for cellular aggregation, for spore differentiation, and for gene expression that is initiated after 6 hr of starvation. From nascent wild-type fruiting bodies we have purified a polypeptide of 17 kd called C-factor, which, at approximately 1 to 2 nM, restores normal development to csgA mutant cells. C-factor activity is not recovered from extracts of unstarved, growing cells or csgA mutant cells. The amino acid sequence from purified C-factor demonstrates that it is the product of the csgA gene. C-factor is active over a narrow range of concentration and has properties of a morphogenetic paracrine signal.  相似文献   

11.
When thymidine-requiring lexA- strains were starved for thymidine, the kinetics of survival were similar to those of a nearly isogenic lexA+ strain. The size distribution of cells in the lexA- and lexA+ cultures were, however, quite different. Whereas most of the cells in the starved lexA+ cultures grew into long filamentous forms (longer than 4.0 mum), many of the lexA- cells were found to have a normal rod shape (4.0 mum or shorter). It was shown that lexA- cells undergo more divisions during thymidine starvation than lexA+ cells. Furthermore, using an autoradiographic method to analyze deoxyribonucleic acid (DNA) distribution in the starved cells, we demonstrated that cells without DNA are produced in both normal and starved lexA- cultures at a much higher frequency than in lexA+ cultures. Some of these cells may be produced by breakdown of DNA, but we favor the hypothesis that they result from an abnormal cell division process. Since lexA mutations are dominant, we conclude that a diffusible product decreases the synthesis or activity of an inhibitor of cell division in lexA- strains when DNA synthesis is blocked by thymidine starvation.  相似文献   

12.
3T3 cells were cultured in media with different phosphate concentrations and the effects on DNA synthesis were examined. Even a modest phosphate depletion markedly inhibited DNA synthesis and cell multiplication in proliferating cultures. Furthermore, the decrease in the proportion of DNA-synthesizing cells observed after phosphate starvation followed the same time-course as the decrease seen after serum starvation. Cells starved to quiescence in a medium with a 100-fold decrease in phosphate concentration remained viable but non-proliferating for up to 3 weeks, i.e. they had entered a state of quiescence comparable with that seen after serum starvation. Addition of phosphate to phosphate-depleted cultures restored DNA synthesis within 24h. Furthermore, the kinetics of [3H]thymidine labelling after phosphate addition were nearly identical with the labelling kinetics following addition of serum to serum-depleted cultures. In contrast, phosphate deprivation had no inhibitory effects on DNA synthesis in simian-virus-40-transformed 3T3 cells. Furthermore, the inhibitory effects on DNA synthesis in such cells caused by a complete removal of serum could not be further enhanced by decreasing the phosphate concentration in the culture medium.  相似文献   

13.
When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.  相似文献   

14.
In rats, feeding protein free diet for 4 days followed by starvation and then high protein diet induced a biphasic ornithine decarboxylase (EC 4.1.1.17) activity, prolonged thymidine kinase (EC 2.7.1.21) activity and DNA synthesis. In contrast feeding a diet containing casein-equivalent amino acid mixture induced a monophasic ornithine decarboxylase activity, short-lived thymidine kinase activity and DNA synthesis. To maintain prolonged thymidine kinase activity and DNA synthesis high protein diet must be given in the early part of the prereplicative period.  相似文献   

15.
By incubating starved and unstarved yeast cells in synthetic media with a pH of 4.5 or 6.7 at 37°C the effect of a 3 hours' glucose starvation on germ-tube production byCandida albicans was evaluated. In addition the endocellular content of total carbohydrates, glycogen, trehalose and proteins after and before the starvation were dosed. The most interesting result was the overcoming of the pH-regulated dimorphism, thanks to the starvation treatment. Infact the starved cultures produced germtubes indifferently in neutral or acid media, whereas the filamentation of the unstarved cultures was more copious in pH 6.7 medium. The endocellular content of trehalose and protein was unchanged, whereas total carbohydrates and glycogen showed a shortage after the 3 hours' glucose starvation. The possible involvements of these metabolic changes in the regulation of dimorphic transition are discussed.  相似文献   

16.
The transforming activity of DNA from a newly established undifferentiated human colon carcinoma cell line (MIP-101) was tested in the NIH-3T3 transfection assay. Southern blot analysis of the transfectant DNA revealed the presence of a human N-ras oncogene. Treatment of MIP-101 cells with the maturational agent sodium butyrate induced a more normal phenotype, including diminished growth rate, elimination of anchorage independent growth, and decreased tumorigenicity (R. Niles, S. Wilhelm, P. Thomas, and N. Zamcheck (1988) J. Cancer Invest. 6, 39). Here we report that there is a significant reduction in the transforming efficiency of the DNA from butyrate-treated MIP-101 cells. A nonspecific reduction in total DNA uptake as an explanation for these findings was eliminated by showing that there was similar uptake and expression of the thymidine kinase gene from the DNA of butyrate-treated and control MIP cells. Butyrate treatment had no detectable effect on the overall structure, methylation, and level of expression of the human N-ras gene from MIP-101 cells. An NIH-3T3 transformant ability after treatment with sodium butyrate. Although butyrate suppressed several transformed properties similar to MIP-101 cells, DNA from control and treated cultures had an identical level of transforming activity. The results suggest that the environment of the MIP cells may contain additional elements not present in the NIH-3T3 transformants which are required to observe the effect of butyrate on reduction of transforming activity.  相似文献   

17.
Previous studies of herpesvirus infections have indicated that a virus-specified thymidine kinase is required for the initial phosphorylation of acyclovir [acycloguanosine or 9-(2-hydroxyethoxymethyl)guanine] in the formation of acycloguanosine triphosphate. The latter compound accumulates in infected cells and competitively inhibits the viral DNA polymerase. We found that mouse cytomegalovirus, which does not express a thymidine kinase, was sensitive to the antiviral effects of acyclovir at a 50% inhibitory dose of approximately 0.23 microM. Acyclovir was equally effective against mouse cytomegalovirus in normal 3T3 cells and in 3T3 cells deficient in cellular thymidine kinase. Furthermore, the activity of acyclovir could not be reversed by excess thymidine, which easily reversed the antiviral activity of acyclovir against herpes simplex virus. Using a high-pressure liquid chromatography technique that easily detected acycloguanosine triphosphate in cells infected with herpes simplex virus, we could not detect acycloguanosine triphosphate in mouse cytomegalovirus-infected cells. These experiments demonstrated that the activity of acyclovir against mouse cytomegalovirus is not dependent on a thymidine phosphorylation pathway. Additional experiments are underway to determine whether acycloguanosine triphosphate is produced by another pathway in concentrations sufficient to inhibit mouse cytomegalovirus DNA polymerase.  相似文献   

18.
J Carcagne  K T Ha  J Armand 《Biologicals》1991,19(4):317-325
The NIH3T3 cell transfection test, as first described by Cooper, has been optimized, then used to examine the transforming activity of genomic DNA extracted from eucaryotic cell lines commonly used for preparing vaccines or biopharmaceuticals. Accurate assessment of technical parameters of the test has led to improvement in reproducibility, while the demonstration of dose-effect relationships has allowed the definition of applications and limits for quantitative use. We have performed the direct assessment of transforming activity of cellular DNAs from cell lines widely used in biotechnology. In particular, we have shown that genomic DNA extracted from Vero, CHO or MRC5 cells, as well as from human or murine lymphoid cells, has no detectable transforming activity on NIH3T3 cells. Lastly, it has been demonstrated that acidic pH conditions are sufficient to destroy the major part--if not all--of the transforming activity of positive control DNAs.  相似文献   

19.
InLactobacillus acidophilus cultures UV irradiated in the exponential phase of growth, the dosesurvival curve was of the simple exponential type, without any shoulder. If the bacteria were subjected to amino acid starvation prior to irradiation, an shoulder corresponding to a quasi-treshold dose (Dq) of about 780 ergs/mm2 appeared in the curve. The administration of protein or RNA-synthesia inhibitors prior to irradiation had the same effect. The effect of pre-irradiation amino acid starvation was abolished by simultaneous thymidine starvation. It was likewise abolished if amino acid starvation was followed by incubation in the presence of amino acids (without thymidine) and then by irradiation of the cells. Post-irradiation amino acid starvation did not lead to the formation of an shoulder but if combined with thymidine starvation it did. It can be concluded from the results that post-irradiation repair processes are facilitated or promoted if, during the post-irradiation interval DNA synthesis is delayed. This delay represents a compensation of the pre-irradiation increase of cellular DNA-content, taking place during inhibition of proteosynthesis. The postirradiation administration of caffeine did not abolish the formation of the shoulder induced by pre-irradiation amino acid starvation; on the contrary, it induced its formation even in exponentially growing, irradiated control bacteria.  相似文献   

20.
The accumulation of low molecular weight RNAs in Escherichia coli cells following amino acid or energy source starvation was examined using two-dimensional polyacrylamide gel electrophoresis. 32P-labeled small RNA prepared from serine- or isoleucine-starved stringent strain (relA+) cells was shown to display gel patterns that were grossly different from that of unstarved cells. It appears that the deprivation of serine or isoleucine has little or no inhibitory effect on the accumulation of transfer RNA cognate to the deprived amino acid. This is demonstrated by a relative increase in the concentrations of small RNAs that can be charged with serine or isoleucine following starvation of these amino acids. However, small RNAs labeled during starvation of phenylalanine or energy source showed gel patterns similar to that of control cells. This suggested a heterogenous response in the accumulation of some low molecular weight RNAs, presumably transfer RNAs, following starvation of different amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号