首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hepatitis Delta Virus (HDV) ribozyme, which is well adapted to the environment of the human cell, is an excellent candidate for the future development of gene-inactivation systems. On top of this, a new generation of HDV ribozymes now exists that benefits from the addition of a specific on/off adaptor (specifically the SOFA-HDV ribozymes) which greatly increases both the ribozyme's specificity and its cleavage activity. Unlike RNAi and hammerhead ribozymes, the designing of SOFA-HDV ribozymes to cleave, in trans, given RNA species has never been the object of a systematic optimization study, even with their recent use for the gene knockdown of various targets. This report aims at both improving and clarifying the design process of SOFA-HDV ribozymes. Both the ribozyme and the targeted RNA substrate were analyzed in order to provide new criteria that are useful in the selection of the most potent SOFA-HDV ribozymes. The crucial features present in both the ribozyme's biosensor and blocker, as well as at the target site, were identified and characterized. Simple rules were derived and tested using hepatitis C virus NS5B RNA as a model target. Overall, this method should promote the use of the SOFA-HDV ribozymes in a plethora of applications in both functional genomics and gene therapy.  相似文献   

2.
3.
Conventionally designed ribozymes may be unable to cleave RNA at sites which are inaccessible due to secondary structure. In addition, it may also be difficult to specifically target a conventionally designed ribozyme to some chimeric RNA molecules. Novel approaches for ribozyme targeting were developed by using the L6 bcr-abl fusion RNA as a model. Using one approach, we successfully directed ribozyme nucleation to a site on the bcr-abl RNA that is distant from the GUA cleavage site. These ribozymes bound to the L6 substrate RNA via an anchor sequence that was complementary to bcr sequences. The anchor was necessary for efficient cleavage as the anchor minus ribozyme, a conventionally designed ribozyme, was inefficient at catalyzing cleavage at this same site. The effect of anchor sequences on catalytic rates was determined for two of these ribozymes. Ribozymes generated by a second approach were designed to cleave at a CUU site in proximity to the bcr-abl junction. Both approaches have led to the development of a series of ribozymes specific for both the L6 and K28 bcr-abl chimeric RNAs, but not normal abl or bcr RNAs. The specificity of the ribozyme correlated in part with the ability of the ribozyme to bind substrate as demonstrated by gel shift analyses. Secondary structure predictions for the RNA substrate support the experimental results and may prove useful as a theoretical basis for the design of ribozymes.  相似文献   

4.
Delta ribozyme has the ability to cleave in transan mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy.  相似文献   

5.
6.
Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.  相似文献   

7.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

8.
Zarrinkar PP  Sullenger BA 《Biochemistry》1999,38(11):3426-3432
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymenathermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.  相似文献   

9.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

10.
RNase P ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural ptRNA substrate. When covalently linked with a guide sequence, the ribozyme can function as a sequence-specific endonuclease and cleave any target RNA sequences that base pair with the guide sequence. Using a site-directed ultraviolet (UV) cross-linking approach, we have mapped the regions of the ribozyme that are in close proximity to a substrate that contains the mRNA sequence encoding thymidine kinase of human herpes simplex virus 1. Our data suggest that the cleavage site of the mRNA substrate is positioned at the same regions of the ribozyme that bind to the cleavage site of a ptRNA. The mRNA-binding domains include regions that interact with the acceptor stem and T-stem and in addition, regions that are unique and not in close contact with a ptRNA. Identification of the mRNA-binding site provides a foundation to study how RNase P ribozymes achieve their sequence specificity and facilitates the development of gene-targeting ribozymes.  相似文献   

11.
Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate.  相似文献   

12.
Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell.  相似文献   

13.
Recently we have demonstrated that hammerhead ribozymes can be fully substituted with 2'-amino pyrimidines without detriment to the catalytic activity, provided that positions 2.2 and/or 2.1 are not modified. We now report on the potential molecular mechanisms by which 2'-amino groups at these positions inhibit the ribozyme cleavage activity. In the presence of Mg(2+), the 2'-amino modification at positions 2.2 and/or 2.1 had no significant effect on substrate binding. Detailed analysis of the ribozyme initial cleavage rates in the presence of various Mg(2+) concentrations indicated that Mg(2+) binding is inhibited by the 2'-amino group at position 2.1. Furthermore, preannealed substrate molecules to the modified ribozyme are not effectively cleaved upon Mg(2+) addition, indicating an alteration of the ribozyme cleavage step. Surprisingly, the cleavage activity of the modified ribozymes was substantially increased when Mg(2+) ions were replaced by the thiophilic Mn(2+) ions, whereas only a moderate cleavage enhancement occurred with its unmodified version. Taken together, our findings indicate that changes in the sugar at position 2.1 alter Mg(2+)-promoting ribozyme cleavage.  相似文献   

14.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

15.
Ribozymes in the age of molecular therapeutics   总被引:4,自引:0,他引:4  
Ribozymes are RNA molecules capable of sequence-specific cleavage of other RNA molecules. Since the discovery of the first group I intron ribozyme in 1982, new classes of ribozymes, each with their own unique reaction, target site specifications, and potential applications, have been identified. These include hammerhead, hairpin, hepatitis delta, varkud satellite, groups I and II intron, and RNase P ribozymes, as well as the ribosome and spliceosome. Meanwhile, ribozyme engineering has enabled the in vitro selection of synthetic ribozymes with unique properties. This, along with advances in ribozyme delivery methods and expression systems, has led to an explosion in the potential therapeutic applications of ribozymes, whether for anti-cancer or anti-viral therapy, or for gene repair.  相似文献   

16.
Ribozyme mediated destruction of RNA in vivo.   总被引:38,自引:3,他引:35       下载免费PDF全文
Previous studies have demonstrated that high ribozyme to substrate ratios are required for ribozyme inhibitory function in nuclear extracts. To obtain high intracellular levels of ribozymes, tRNA genes, known to be highly expressed in most tissues, have been modified for use as ribozyme expression cassettes. Ribozyme coding sequences were placed between the A and the B box, internal promoter sequences of a Xenopus tRNAMet gene. When injected into the nucleus of frog oocytes, the ribozyme tRNA gene (ribtDNA) produces 'hammerhead' ribozymes which cleave the 5' sequences of U7snRNA, its target substrate, with high efficiency in vitro. Oocytes were coinjected with ribtDNA, U7snRNA and control substrate RNA devoid of a cleavage sequence. It was found that the ribtRNA remained localized mainly in the nucleus, whereas the substrate and the control RNA exited rapidly into the cytoplasm. However, sufficient ribtRNA migrated into the cytoplasm to cleave, and destroy, the U7snRNA. Thus, the action of targeted 'hammerhead' ribozymes in vivo is demonstrated.  相似文献   

17.
 Hammerhead ribozymes provide valuable tools in the field of gene therapy due to their cleavage specificity and the broad range of RNA targets. A major prerequisite for the selection of suitable ribozymes for in vivo application is represented by in vitro determination of ribozyme cleavage kinetic constants. From the experimental cleavage data, kinetic constants are usually calculated under the assumption of rapid conversion of the substrate into the ribozyme-substrate complex. However, this condition is often not satisfied for ribozymes carrying additional RNA stretches, due to cloning strategies or necessary for ribozyme expression in the cell. To overcome this problem, we propose a mathematical model which is able to calculate ribozyme kinetic constants in the case of non-rapid conversion of substrate into ribozyme-substrate complex. In addition, our system gives the opportunity to evaluate the nature of the S conversion into ES through the determination of a model parameter. The validity of the proposed model is restricted to the hypothesis of a ribozyme excess over the substrate at the beginning of the cleavage reaction and to the absence of any mass exchange with the external environment. Received: 1 February 2001 / Revised version: 1 September 2001 / Published online: 23 August 2002  相似文献   

18.
In recent years major progress has been made in elucidating the mechanism and structure of catalytic RNA molecules, and we are now beginning to understand ribozymes well enough to turn them into useful tools. Work in our laboratory has focused on the development of twin ribozymes for site-specific RNA sequence alteration. To this end, we followed a strategy that relies on the combination of two ribozyme units into one molecule (hence dubbed twin ribozyme). Here, we present reverse-joined hairpin ribozymes that are structurally optimized and which, in addition to cleavage, catalyse efficient RNA ligation. The most efficient variant ligated its appropriate RNA substrate with a single turnover rate constant of 1.1 min(-1) and a final yield of 70%. We combined a reverse-joined hairpin ribozyme with a conventional hairpin ribozyme to create a twin ribozyme that mediates the insertion of four additional nucleotides into a predetermined position of a substrate RNA, and thus mimics, at the RNA level, the repair of a short deletion mutation; 17% of the initial substrate was converted to the insertion product.  相似文献   

19.
RNA double cleavage by a hairpin-derived twin ribozyme   总被引:4,自引:4,他引:0  
The hairpin ribozyme is a small catalytic RNA that catalyses reversible sequence-specific RNA hydrolysis in trans. It consists of two domains, which interact with each other by docking in an antiparallel fashion. There is a region between the two domains acting as a flexible hinge for interdomain interactions to occur. Hairpin ribozymes with reverse-joined domains have been constructed by dissecting the domains at the hinge and rejoining them in reverse order. We have used both the conventional and reverse-joined hairpin ribozymes for the design of a hairpin-derived twin ribozyme. We show that this twin ribozyme cleaves a suitable RNA substrate at two specific sites while maintaining the target specificity of the individual monoribozymes. For characterisation of the studied ribozymes we have evaluated a quantitative assay of sequence-specific ribozyme activity using fluorescently labelled RNA substrates in conjunction with an automated DNA sequencer. This assay was found to be applicable with hairpin and hairpin-derived ribozymes. The results demonstrate the potential of hairpin ribozymes for multi-target strategies of RNA cleavage and suggest the possibility for employing hairpin-derived twin ribozymes as powerful tools for RNA manipulation in vitro and in vivo.  相似文献   

20.
Inhibition of gene expression with ribozymes   总被引:5,自引:0,他引:5  
Summary 1. Ribozymes can be designed to cleavein trans, i.e. several substrate molecules can be turned over by one molecule of the catalytic RNA. Only small molecular weight ribozymes, or small ribozymes, are discussed in this review with particular emphasis on the hammerhead ribozyme as this has been most widely used for the inhibition of gene expression by cleavage of mRNAs.2. Cellular delivery of the ribozyme is of crucial importance for the success of inhibition of gene expression by this methodology. Two modes of delivery can be envisaged, endogenous and exogenous delivery. Of the former several variants exist, depending on the vector used. The latter is still in its infancy, even though chemical modification has rendered such ribozymes resistant against degradation by serum nucleases without impairment of catalytic efficiency.3. Various successful applications of ribozymes for the inhibition of gene expression are discussed, with particular emphasis on HIV1 and cancer targets. These examples demonstrate the promise of this methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号