首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor.1 Upon Nod factor perception a signaling cascade is activated that is also essential for endomycorrhizal symbiosis (Fig. 1). This suggests that rhizobium co-opted the evolutionary far more ancient mycorrhizal signaling pathway in order to establish an endosymbiotic interaction with legumes.2 As arbuscular mycorrhizal fungi of the Glomeromycota phylum can establish a symbiosis with the vast majority of land plants, it is most probable that this signaling cascade is wide spread in the plant kingdom.3 However, Nod factor perception generally is considered to be unique to legumes. Two recent breakthroughs on the evolutionary origin of rhizobium Nod factor signaling demonstrate that this is not the case.4,5 The purification of Nod factor-like molecules excreted by the mycorrhizal fungus Glomus intraradices and the role of the LysM-type Nod factor receptor PaNFP in the non-legume Parasponia andersonii provide novel understanding on the evolution of rhizobial Nod factor signaling.Open in a separate windowFigure 1Schematic representation of the genetically dissected symbiosis signaling pathway. In legumes rhizobium Nod factors and mycorrhizal Myc factors are perceived by distinct receptor complexes. In case of Nod factors these are the LysM-RK type receptors MtLYK3/LjNFR1 and MtNFP/LjNFR5, whereas Myc factors remain to be elucidated. In Parasponia PaNFP fulfils a dual function and acts in both symbioses. The subsequent common signaling pathway consists of several components including a plasma membrane localized LRR-type receptor (MtDMI2/LjSymRK), a cation channel in the nuclear envelope (MtDMI1/LjCASTOR/LjPOLLUX) and subunits of the nuclear pore (NUP85, NUP133), and a nuclear localized complex of calcium calmodulin dependent kinase (CCaMK) and interactor protein MtIPD3/LjCYCLOPS. Downstream of CCaMK the rhizobium and mycorrhiza induced responses bifurcate.Key words: parasponia, legumes, rhizobium, mycorrhizae, Nod factor  相似文献   

5.
6.
Gough C 《Current biology : CB》2003,13(24):R973-R975
Rhizobia produce signalling molecules, called Nod factors, which enable them to be recognised by their host plants. Recent cloning of legume genes indicates that LysM domain receptor kinases are components of Nod factor receptors.  相似文献   

7.
Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca(2+) levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by alpha-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway.  相似文献   

8.
Inoculation with rhizobia or application of Nod factors (lipo-chitooligosaccharides, LCOs) causes transient increases in cytosolic calcium concentration in root hairs of legume plants. We conducted experiments to evaluate whether application of LCO and inoculation with rhizobia improved (45)CaCl(2) uptake into soybean (Glycine max [L.] Merr.) leaves. Roots of soybean seedlings with one developing trifoliolate were immersed in Murashige and Skoog (MS) basal liquid medium containing treatment solutions and (45)CaCl(2), and the plants were incubated under continuous light. After 24 h, leaf samples were taken, and their radioactivity levels were determined. Addition of NodBj-V (C18:1 MeFuc) at a concentration of 10(-7) M increased (45)Ca(2+) uptake. Inoculation with genistein-induced Bradyrhizobium japonicum strain 532C and USDA3 also increased (45)Ca(2+) uptake; whereas, inoculation with strain Bj-168, a nodC-mutant incapable of producing LCO, did not. Rhizobia that do not normally nodulate soybean, i.e. Rhizobium leguminosarum, and Sinorhizobium meliloti did not affect calcium uptake, nor did the tetramer or pentamer of chitosan, or lumichrome. Surprisingly, Rhizobium sp. NGR234, which can nodulate some types of soybean, although without effective N(2)-fixation, also did not affect calcium uptake. This work suggests that the rhizobial symbiosis, in addition to its known role in provision of nitrogen fixation, also improves early calcium uptake into soybean plants.  相似文献   

9.
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.  相似文献   

10.
11.
Plants possess highly sensitive perception systems by which microbial signal molecules are recognized. In the Bradyrhizobium-soybean (Glycine max (L.) Merr.) symbiosis, recognition is initiated through exchange of signal molecules, generally flavonoids from soybean and lipo-chitooligosaccharides (Nod factors) from the microsymbiont. Application of the Nod factor Nod Bj-V (C18:1, MeFuc) induced soybean resistance to powdery mildew caused by Microsphaera diffusa. Addition of Nod factor (concentrations ranging from 10(-6) to 10(-10) M) to soybean root systems led to reductions in disease incidence. The lowest disease incidence was caused by Nod factor treatment at 10(-6) M. The effect of Nod factor application on fungal growth and development was measured at 4, 12, 48, and 96 h after inoculation. Colony diameter and number of germ tubes per conidium were decreased by 10(-6) M Nod factor. Phenylalanine ammonia lyase (PAL, EC.4.3.1.1.) is the first enzyme of the phenyl propanoid pathway, and is commonly activated as part of plant responses to disease. Treatment of soybean seedlings with Nod factor, through stem wounds, induced PAL activity; the most rapid increase followed treatment with 10(-6) M Nod factor. These data show that soybean plants are able to detect root applied LCO and respond by increased disease resistance.  相似文献   

12.
Legumes form a mutualistic symbiosis with bacteria collectively referred to as rhizobia. The bacteria induce the formation of nodules on the roots of the appropriate host plant, and this process requires the bacterial signaling molecule Nod factor. Although the interaction is beneficial to the plant, the number of nodules is tightly regulated. The gaseous plant hormone ethylene has been shown to be involved in the regulation of nodule number. The mechanism of the ethylene inhibition on nodulation is unclear, and the position at which ethylene acts in this complex developmental process is unknown. Here, we used direct and indirect ethylene application and inhibition of ethylene biosynthesis, together with comparison of wild-type plants and an ethylene-insensitive supernodulating mutant, to assess the effect of ethylene at multiple stages of this interaction in the model legume Medicago truncatula. We show that ethylene inhibited all of the early plant responses tested, including the initiation of calcium spiking. This finding suggests that ethylene acts upstream or at the point of calcium spiking in the Nod factor signal transduction pathway, either directly or through feedback from ethylene effects on downstream events. Furthermore, ethylene appears to regulate the frequency of calcium spiking, suggesting that it can modulate both the degree and the nature of Nod factor pathway activation.  相似文献   

13.
Nod factor inhibition of reactive oxygen efflux in a host legume   总被引:1,自引:0,他引:1  
Shaw SL  Long SR 《Plant physiology》2003,132(4):2196-2204
Hydrogen peroxide (H(2)O(2)) efflux was measured from Medicago truncatula root segments exposed to purified Nod factor and to poly-GalUA (PGA) heptamers. Nod factor, at concentrations > 100 pM, reduced H(2)O(2) efflux rates to 60% of baseline levels beginning 20 to 30 min after exposure, whereas the PGA elicitor, at > 75 nM, caused a rapid increase in H(2)O(2) efflux to >200% of baseline rates. Pretreatment of plants with Nod factor alters the effect of PGA by limiting the maximum H(2)O(2) efflux rate to 125% of that observed for untreated plants. Two Nod factor-related compounds showed no ability to modulate peroxide efflux, and tomato (Lycopersicon esculentum), a nonlegume, showed no response to 1 nM Nod factor. Seven M. truncatula mutants, lacking the ability to make nodules, were tested for Nod factor effects on H(2)O(2) efflux. The nfp mutant was blocked for suppression of peroxide efflux, whereas the dmi1 and dmi2 mutants, previously shown to be blocked for early Nod factor responses, showed a wild-type peroxide efflux modulation. These data demonstrate that exposure to Nod factor suppresses the activity of the reactive oxygen-generating system used for plant defense responses.  相似文献   

14.
Soil-living rhizobia secrete lipochitin oligosaccharides known as Nod factors, which in Lotus japonicus are perceived by at least two Nod-factor receptors, NFR1 and NFR5. Despite progress in identifying molecular components critical for initial legume host recognition of the microsymbiont and cloning of downstream components, little is known about the activation and signalling mechanisms of the Nod-factor receptors themselves. Here we show that both receptor proteins localize to the plasma membrane, and present evidence for heterocomplex formation initiating downstream signalling. Expression of NFR1 and NFR5 in Nicotiana benthamiana and Allium ampeloprasum (leek) cells caused a rapid cell-death response. The signalling leading to cell death was abrogated using a kinase-inactive variant of NFR1. In these surviving cells, a clear interaction between NFR1 and NFR5 was detected in vivo through bimolecular fluorescence complementation (BiFC). To analyse the inter- and intramolecular phosphorylation events of the kinase complex, the cytoplasmic part of NFR1 was assayed for in vitro kinase activity, and autophosphorylation on 24 amino acid residues, including three tyrosine residues, was found by mass spectrometry. Substitution of the phosphorylated amino acids of NFR1 identified a single phosphorylation site to be essential for NFR1 Nod-factor signalling in vivo and kinase activity in vitro. In contrast to NFR1, no in vitro kinase activity of the cytoplasmic domain of NFR5 was detected. This is further supported by the fact that a mutagenized NFR5 construct, substituting an amino acid essential for ATP binding, restored nodulation of nfr5 mutant roots.  相似文献   

15.
The role of ion fluxes in Nod factor signalling in Medicago sativa   总被引:4,自引:3,他引:1  
Using ion-selective microelectrodes, the basis of Nod factor-induced changes in the plasma membrane potential was analysed by measuring the extracellular free concentrations of Ca2+, K+, H+ and Cl in the root hair zone of alfalfa. After addition of the Rhizobium meliloti Nod factor NodRm-IV(C16:2,S) at a concentration of 0.1 μM, a decrease in [Ca2+] was observed first, which was followed after a few seconds by an increase of [Cl], by an alkalinization, and then by a delayed increase of [K+], all of which were transient changes. Simultaneously with the appearance of Cl ions in the root hair zone, a decrease in cytosolic [Cl] was measured. It was concluded that the depolarization was caused by temporary short-circuiting of the proton pump through the rapid release of Cl ions along their steep electrochemical gradient. Since under resting conditions the driving force for K+ ions was inwardly directed, their release was delayed until their driving force was inverted. This indicates that K+ serves as a charge balance that eventually stops depolarization and initiates repolarization. Since the decrease in [Ca2+] was observed seconds before the increase in [Cl] and the depolarization, it is argued that Ca2+ entering into the cell does not cause the depolarization directly, but might initiate it by triggering the activation of an anion channel that then releases the chloride ions. The observations that the Ca2+ ionophore A23187 mimicks the Nod factor response, and that the Ca2+ channel antagonist nifedipine inhibits this response, support the idea that Ca2+ plays a primary role in the transduction of the Nod signal in alfalfa.  相似文献   

16.
17.
18.
Molecular mechanisms of olfaction   总被引:4,自引:0,他引:4  
  相似文献   

19.
Molecular mechanisms of apoptosis   总被引:11,自引:0,他引:11  
Apoptosis (Programmed Cell Death) is a genetically regulated, morphologically distinct form of cell death that can be initiated by many different physiological and pathological stimuli. Such strategic intracellular programming is initiated in many instances during normal life cycle and development in order to maintain the homeostasis of a multicellular organism, to eliminate unwanted cells. However, apoptosis is also involved in a wide range of pathologic conditions, including neurodegenerative and cardiovascular diseases, cancer and autoimmune diseases. Therefore, the ability to understand and manipulate the cell death machinery is an obvious goal of medical research. Here we review the basic components of the death machinery, discuss their interaction in regulation of apoptosis, and describe the main pathways that are used to activate apoptosis.  相似文献   

20.
Molecular mechanisms of photosensitization   总被引:1,自引:0,他引:1  
G Laustriat 《Biochimie》1986,68(6):771-778
The first part of this article is devoted to basic concepts of photosensitization and to the primary photophysical and photochemistry processes involved in the reaction. The electronic configuration of molecular oxygen in its ground or activated states, which intervene in numerous photosensitized reactions, is reviewed. Finally, the main photosensitized reactions are reviewed and classified into three different groups: reactions due to radicals (type I), reactions due to singlet oxygen (type II) and those which do not involve oxygen (type III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号