首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel category of variable tandem repeats (VNTR) called mycobacterial interspersed repetitive units (MIRUs) has been identified for Mycobacterium ulcerans (n = 39), M. marinum (n = 27), and one related organism. Fifteen MIRU loci were identified in the genome of M. marinum and were used to genotype M. ulcerans, M. marinum, and an M. marinum-like organism that is considered a possible missing link between M. marinum and M. ulcerans. Seven MIRU loci were polymorphic, and locus-specific PCRs for four of these loci differentiated seven M. ulcerans genotypes, four M. marinum genotypes, and a unique genotype for the missing link organism. The seven M. ulcerans genotypes were related to six different geographic origins of isolates. All isolates from West and Central Africa, including old and recent isolates, belonged to the same genotype, emphasizing the great spatiotemporal homogeneity among African isolates. Unlike the M. ulcerans genotypes, the four M. marinum genotypes could not be clearly related to the geographic origins of the isolates. According to MIRU-VNTR typing, all M. ulcerans and M. marinum isolates of American origin were closely related, suggesting a common American ancestor for these two pathogenic species on the American continents. MIRU typing has significant potential value for discriminating between reoccurrence and reinfection for M. ulcerans disease.  相似文献   

2.
We performed spoligotyping and 12-mycobacterial interspersed repetitive unit-variable number tandem repeats (MIRU-VNTRs) typing to characterise Mycobacterium bovis isolates collected from tissue samples of bovines with lesions suggestive for tuberculosis during slaughter inspection procedures in abattoirs in Brazil. High-quality genotypes were obtained with both procedures for 61 isolates that were obtained from 185 bovine tissue samples and all of these isolates were identified as M. bovis by conventional identification procedures. On the basis of the spoligotyping, 53 isolates were grouped into nine clusters and the remaining eight isolates were unique types, resulting in 17 spoligotypes. The majority of the Brazilian M. bovis isolates displayed spoligotype patterns that have been previously observed in strains isolated from cattle in other countries. MIRU-VNTR typing produced 16 distinct genotypes, with 53 isolates forming eight of the groups, and individual isolates with unique VNTR profiles forming the remaining eight groups. The allelic diversity of each VNTR locus was calculated and only two of the 12-MIRU-VNTR loci presented scores with either a moderate (0.4, MIRU16) or high (0.6, MIRU26) discriminatory index (h). Both typing methods produced similar discriminatory indexes (spoligotyping h = 0.85; MIRU-VNTR h = 0.86) and the combination of the two methods increased the h value to 0.94, resulting in 29 distinct patterns. These results confirm that spoligotyping and VNTR analysis are valuable tools for studying the molecular epidemiology of M. bovis infections in Brazil.  相似文献   

3.
The aim of the present study was to compare polymerase chain reaction (PCR)-based methods--spoligotyping and mycobacterial interspersed repetitive units (MIRU) typing--with the gold-standard IS6110 restriction fragment length polymorphism (RFLP) analysis in 101 isolates of Mycobacterium tuberculosis to determine the genetic diversity of M. tuberculosis clinical isolates from Delhi, North India. Spoligotyping resulted in 49 patterns (14 clusters); the largest cluster was composed of Spoligotype International Types (SITs)26 [Central-Asian (CAS)1-Delhi lineage], followed by SIT11 [East-African-Indian (EAI) 3-Indian lineage]. A large number of isolates (75%) belonged to genotypic lineages, such as CAS, EAI and Manu, with a high specificity for the Indian subcontinent, emphasising the complex diversity of the phylogenetically coherent M. tuberculosis in North India. MIRU typing, using 11 discriminatory loci, was able to distinguish between all but two strains based on individual patterns. IS6110-RFLP analysis (n = 80 strains) resulted in 67 unique isolates and four clusters containing 13 strains. MIRUs discriminated all 13 strains, whereas spoligotyping discriminated 11 strains. Our results validate the use of PCR-based molecular typing of M. tuberculosis using repetitive elements in Indian isolates and demonstrate the usefulness of MIRUs for discriminating low-IS6110-copy isolates, which accounted for more than one-fifth of the strains in the present study.  相似文献   

4.
Seven Y-chromosome microsatellite loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393) were analyzed in three populations from sub-Saharan Africa: the Bamileke and Ewondo populations from Cameroon and the Hutu from Rwanda. Complete typing was obtained for 112 individuals, and a total of 53 different haplotypes was observed. The single-locus gene diversity, averaged across populations, ranges from 0.100 for the DYS392 locus to 0.610 for the DYS389I locus. The haplotype diversity ranges from 0.832 (Ewondo) to 0.965 (Hutu), with an intermediate value of 0.918 in the Bamileke. The diversity among Bamileke, Ewondo, Hutu, and other sub-Saharan populations selected from the literature was analyzed using both a classical (F(ST)) and a stepwise-based (R(ST)) genetic distance method. The pattern of interpopulational diversity based on F(ST) was congruent with anthropological knowledge, while that based on R(ST) revealed unexpected and unconvincing population affinities. From a practical point of view, our study indicates that Y-chromosome microsatellite data may provide useful information for analyses of interpopulational diversity among sub-Saharan populations if an adequate number of loci and individuals along with an appropriate genetic distance method are used. On a theoretical ground, we propose that the lesser performance of R(ST) compared to F(ST) could be explained by the important role played by genetic drift in shaping the relationships among examined populations.  相似文献   

5.
Bartonellae are facultative intracellular bacteria and are highly adapted to their mammalian host cell niches. Straw-colored fruit bats (Eidolon helvum) are commonly infected with several bartonella strains. To elucidate the genetic diversity of these bartonella strains, we analyzed 79 bartonella isolates from straw-colored fruit bats in seven countries across Africa (Cameroon, Annobon island of Equatorial Guinea, Ghana, Kenya, Nigeria, Tanzania, and Uganda) using a multi-locus sequencing typing (MLST) approach based on nucleotide sequences of eight loci (ftsZ, gltA, nuoG, ribC, rpoB, ssrA, ITS, and 16S rRNA). The analysis of each locus but ribC demonstrated clustering of the isolates into six genogroups (E1 – E5 and Ew), while ribC was absent in the isolates belonging to the genogroup Ew. In general, grouping of all isolates by each locus was mutually supportive; however, nuoG, gltA, and rpoB showed some incongruity with other loci in several strains, suggesting a possibility of recombination events, which were confirmed by network analyses and recombination/mutation rate ratio (r/m) estimations. The MLST scheme revealed 45 unique sequence types (ST1 – 45) among the analyzed bartonella isolates. Phylogenetic analysis of concatenated sequences supported the discrimination of six phylogenetic lineages (E1 – E5 and Ew) corresponding to separate and unique Bartonella species. One of the defined lineages, Ew, consisted of only two STs (ST1 and ST2), and comprised more than one-quarter of the analyzed isolates, while other lineages contained higher numbers of STs with a smaller number of isolates belonging to each lineage. The low number of allelic polymorphisms of isolates belonging to Ew suggests a more recent origin for this species. Our findings suggest that at least six Bartonella species are associated with straw-colored fruit bats, and that distinct STs can be found across the distribution of this bat species, including in populations of bats which are genetically distinct.  相似文献   

6.

Background

Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis).

Findings

Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International-types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated.

Conclusions

Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients.
  相似文献   

7.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease after tuberculosis and leprosy. It is an emerging infectious disease that afflicts mainly children and youths in West Africa. Little is known about the evolution and transmission mode of M. ulcerans, partially due to the lack of known genetic polymorphisms among isolates, limiting the application of genetic epidemiology. To systematically profile single nucleotide polymorphisms (SNPs), we sequenced the genomes of three M. ulcerans strains using 454 and Solexa technologies. Comparison with the reference genome of the Ghanaian classical lineage isolate Agy99 revealed 26,564 SNPs in a Japanese strain representing the ancestral lineage. Only 173 SNPs were found when comparing Agy99 with two other Ghanaian isolates, which belong to the two other types previously distinguished in Ghana by variable number tandem repeat typing. We further analyzed a collection of Ghanaian strains using the SNPs discovered. With 68 SNP loci, we were able to differentiate 54 strains into 13 distinct SNP haplotypes. The average SNP nucleotide diversity was low (average 0.06–0.09 across 68 SNP loci), and 96% of the SNP locus pairs were in complete linkage disequilibrium. We estimated that the divergence of the M. ulcerans Ghanaian clade from the Japanese strain occurred 394 to 529 thousand years ago. The Ghanaian subtypes diverged about 1000 to 3000 years ago, or even much more recently, because we found evidence that they evolved significantly faster than average. Our results offer significant insight into the evolution of M. ulcerans and provide a comprehensive report on genetic diversity within a highly clonal M. ulcerans population from a Buruli ulcer endemic region, which can facilitate further epidemiological studies of this pathogen through the development of high-resolution tools.  相似文献   

8.
AIMS: Multilocus sequence typing (MLST) was performed for vancomycin-resistant Enterococcus faecium (VREF) from diverse geographical areas in Korea to obtain insights into the genetic relationships with other molecular profiles. To understand the diversity of lineages, vancomycin-susceptible E. faecium (VSEF) were included. METHODS AND RESULTS: A total of 60 E. faecium isolates were analysed by MLST and esp profile. Molecular typing of Tn1546 of 30 VREF strains was evaluated by overlapping PCR of Tn1546 and DNA sequencing. Seven sequence types (ST) were found among 30 VSEF isolates, and four STs were found among 30 VREF isolates. The types most frequently encountered were ST 78 (26 isolates) and ST 203 (16 isolates). Of the 60 E. faecium isolates, 35 isolates were positive for the esp gene. On molecular typing of Tn1546, all VREF isolates were divided into four main types. Strains with the same ST showed divergence in Tn1546 types and strains with the same Tn1546 type represented different STs. CONCLUSIONS: An association between Tn1546 typing and MLST was not found. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that the horizontal spread of Tn1546 between strains plays a major role in the dissemination of vancomycin resistance in Korea.  相似文献   

9.
Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), is the most significant infectious disease in psittacines. PBFD is thought to have originated in Australia but is now found worldwide; in Africa, it threatens the survival of the indigenous endangered Cape parrot and the vulnerable black-cheeked lovebird. We investigated the genetic diversity of putative BFDVs from southern Africa. Feathers and heparinized blood samples were collected from 27 birds representing 9 psittacine species, all showing clinical signs of PBFD. DNA extracted from these samples was used for PCR amplification of the putative BFDV coat protein (CP) gene. The nucleotide sequences of the CP genes of 19 unique BFDV isolates were determined and compared with the 24 previously described sequences of BFDV isolates from Australasia and America. Phylogenetic analysis revealed eight BFDV lineages, with the southern African isolates representing at least three distinctly unique genotypes; 10 complete genome sequences were determined, representing at least one of every distinct lineage. The nucleotide diversity of the southern African isolates was calculated to be 6.4% and is comparable to that found in Australia and New Zealand. BFDVs in southern Africa have, however, diverged substantially from viruses found in other parts of the world, as the average distance between the southern African isolates and BFDV isolates from Australia ranged from 8.3 to 10.8%. In addition to point mutations, recombination was found to contribute substantially to the level of genetic variation among BFDVs, with evidence of recombination in all but one of the genomes analyzed.  相似文献   

10.
Reliable molecular detection of Mycobacterium ulcerans in environmental samples is essential to study the ecology and transmission of this important human pathogen. Variable number tandem repeat (VNTR) typing is a valuable method for distinguishing M. ulcerans isolates from different geographic regions and for distinguishing M. ulcerans from other members of the Mycobacterium marinum/M. ulcerans complex, but its application to environmental samples has not yet been evaluated systematically. This study compares the sensitivity and specificity of PCR detection of 13 VNTR loci to determine the best loci for the analysis of environmental samples. This study demonstrates that VNTR typing using selected loci can be a useful addition to established molecular methods for detecting M. ulcerans in the environment and highlights some of the issues encountered when using molecular methods to detect microorganisms in environmental samples. When applied to environmental samples collected from an endemic region in Victoria, Australia, VNTR typing confirmed that the strain of M. ulcerans being detected was indistinguishable from the strain causing disease in humans in that region.  相似文献   

11.
Aims:  To study the yeast diversity of Nigerian palm wines by comparison with other African strains.
Methods and Results:  Twenty-three Saccharomyces cerevisiae strains were obtained from palm wine samples collected at four locations in eastern Nigeria, and characterized using different molecular techniques: internal transcribed spacer restriction fragment length polymorphism and sequence analysis, pulsed field gel electrophoresis, inter delta typing and microsatellite multilocus analysis. These techniques revealed that palm wine yeasts represent a group of closely related strains that includes other West African isolates (CBS400, NCYC110, DVPG6044). Population analysis revealed an excess of homozygote strains and an allelic richness similar to wine suggestive of local domestication. Several other African yeast strains were not connected to this group. Ghana sorghum beer strains and other African strains (DBVPG1853 and MUCL28071) displayed strikingly high relatedness with European bread, beer or wine strains, and the genome of strain MUCL30909 contained African and wine-type alleles, indicating its hybrid origin.
Conclusions:  Nigerian palm wine yeast represents a local specific yeast flora, whereas a European origin or hybrid was suspected for several other Africa isolates.
Significance and Impact of the Study:  This study presents the first genetic characterization of an autochthonous African palm wine yeast population and confirms the idea that human intervention has favoured yeast migration.  相似文献   

12.
Two hundred and thirty-six mitochondrial DNA nucleotide sequences were used in combination with polymorphism at four nuclear microsatellite loci to assess the amount and distribution of genetic variation within and between African savannah elephants. They were sampled from 11 localities in eastern, western and southern Africa. In the total sample, 43 haplotypes were identified and an overall nucleotide diversity of 2.0% was observed. High levels of polymorphism were also observed at the microsatellite loci both at the level of number of alleles and gene diversity. Nine to 14 alleles per locus across populations and 44 alleles in the total sample were found. The gene diversity ranged from 0.51 to 0.72 in the localities studied. An analysis of molecular variance showed significant genetic differentiation between populations within regions and also between regions. The extent of subdivision between populations at the mtDNA control region was approximately twice as high as shown by the microsatellite loci (mtDNA F(ST) = 0.59; microsatellite R(ST) = 0.31). We discuss our results in the light of Pleistocene refugia and attribute the observed pattern to population divergence in allopatry accompanied by a recent population admixture following a recent population expansion.  相似文献   

13.
Isolates of Mycobacterium avium complex (MAC) were cultured from sputum samples obtained from patients in Guinea-Bissau, West Africa. Twenty-eight isolates hybridising with MAC probe (AccuProbe) were further characterised by different molecular techniques: hybridisation with species-specific probes (AccuProbe) for M. avium and M. intracellulare, partial sequencing of 16S rRNA gene and PCR detection of the DT1-DT6 sequences and the macrophage-induced gene (mig). Only one of the 28 isolates reacted with the M. avium probe and four with the M. intracellulare probe. Two isolates expressed the DT1 sequence, and three the DT6. The mig was detected in 18 (64%) of the isolates. Sequencing of 16S rRNA had the greatest discriminative power of the typing methods applied, without strong correlation with any other technique. Clinical MAC isolates from Guinea-Bissau demonstrated a wide genetic diversity among the members of M. avium complex that might reflect on biotope variation.  相似文献   

14.
Mycobacterium ulcerans causes Buruli ulcer, the third most prevalent mycobacterial infection of immunocompetent humans after tuberculosis and leprosy. Recent work has shown that the production by M. ulcerans of mycolactone, a novel polyketide, may partly explain the pathogenesis of Buruli ulcer. To search for the genetic basis of virulence in M. ulcerans, we took advantage of the close genetic relationship between M. ulcerans and Mycobacterium marinum by performing genomic suppressive subtractive hybridization of M. ulcerans with M. marinum. We identified several DNA fragments specific to M. ulcerans, in particular, a type I polyketide synthase locus with a highly repetitive modular arrangement. We postulate that this locus is responsible for the synthesis of mycolactone in M. ulcerans.  相似文献   

15.
Scattered populations of the same tree species in montane forests through Africa have led to speculations on the origins of distributions. Here, we inferred the colonization history of the Afromontane tree Prunus africana using seven chloroplast DNA loci to study 582 individuals from 32 populations sampled in a range-wide survey from across Africa, revealing 22 haplotypes. The predominant haplotype, HT1a, occurred in 13 populations of eastern and southern Africa, while a second common haplotype, HT1m, occurred in populations of western Uganda and western Africa. The high differentiation observed between populations in East Africa was unexpected, with stands in western Uganda belonging with the western African lineage. High genetic differentiation among populations revealed using ordered alleles (N(ST) = 0.840) compared with unordered alleles (G(ST) = 0.735), indicated a clear phylogeographic pattern. Bayesian coalescence modelling suggested that 'east' and 'west' African types likely split early during southward migration of the species, while further more recent splitting events occurred among populations in the East of the continent. The high genetic similarity found between western Uganda and west African populations indicates that a former Afromontane migration corridor may have existed through Equatorial Africa.  相似文献   

16.

Background

Tuberculosis (TB) is a serious problem in China. While there have been some studies on the nationwide genotyping of Mycobacterium tuberculosis (M. tuberculosis), there has been little detailed research in Beijing, the capital of China, which has a huge population. Here, M. tuberculosis clinical strains collected in Beijing during 2009 were genotyped by classical methods.

Methodology/Principal Findings

Our aim was to analyze the genetic diversity of M. tuberculosis strains within the Beijing metropolitan area. We characterized these strains using two standard methods, spoligotyping (n = 1585) and variable number of tandem repeat (VNTR) typing (n = 1053). We found that the most prominent genotype was Beijing family genotype. Other genotypes included the MANU, T and H families etc. Spoligotyping resulted in 137 type patterns, included 101 unclustered strains and 1484 strains clustered into 36 clusters. In VNTR typing analysis, we selected 12-locus (QUB-11b, MIRU10, Mtub21, MIRU 23, MIRU39, MIRU16, MIRU40, MIRU31, Mtub24, Mtub04, MIRU20, and QUB-4156c) and named it 12-locus (BJ) VNTR. VNTR resulted in 869 type patterns, included 796 unclustered strains and 257 strains clustered into 73 clusters. It has almost equal discriminatory power to the 24-locus VNTR.

Conclusions/Significance

Our study provides a detailed characterization of the genotypic diversity of M. tuberculosis in Beijing. Combining spoligotyping and VNTR typing to study the genotyping of M. tuberculosis gave superior results than when these techniques were used separately. Our results indicated that Beijing family strains were still the most prevalent M. tuberculosis in Beijing. Moreover, VNTR typing analyzing of M. tuberculosis strains in Beijing was successfully accomplished using 12-locus (BJ) VNTR. This method used for strains genotyping from the Beijing metropolitan area was comparable. This study will not only provide TB researchers with valuable information for related studies, but also provides guidance for the prevention and control of TB in Beijing.  相似文献   

17.
Previous studies of the 16S rRNA genes from Mycobacterium ulcerans and Mycobacterium marinum have suggested a very close genetic relationship between these species (99.6% identity). However, these organisms are phenotypically distinct and cause diseases with very different pathologies. To investigate this apparent paradox, we compared 3,306 nucleotides from the partial sequences of eight housekeeping and structural genes derived from 18 M. ulcerans strains and 22 M. marinum strains. This analysis confirmed the close genetic relationship inferred from the 16S rRNA data, with nucleotide sequence identity ranging from 98.1 to 99.7%. The multilocus sequence analysis also confirmed previous genotype studies of M. ulcerans that have identified distinct genotypes within a geographical region. Single isolates of both M. ulcerans and M. marinum that were shown by the sequence analysis to be the most closely related were then selected for further study. One- and two-dimensional pulsed-field gel electrophoresis was employed to compare the architecture and size of the genome from each species. Genome sizes of approximately 4.4 and 4.6 Mb were obtained for M. ulcerans and M. marinum, respectively. Significant macrorestriction fragment polymorphism was observed between the species. However, hybridization analysis of DNA cleaved with more frequently cutting enzymes identified significant preservation of the flanking sequence at seven of the eight loci sequenced. The exception was the 16S rRNA locus. Two high-copy-number insertion sequences, IS2404 and IS2606, have recently been reported in M. ulcerans, and significantly, these elements are not present in M. marinum. Hybridization of the AseI restriction fragments from M. ulcerans with IS2404 and IS2606 indicated widespread genome distribution for both of these repeated sequences. Taken together, these data strongly suggest that M. ulcerans has recently diverged from M. marinum by the acquisition and concomitant loss of DNA in a manner analogous to the emergence of M. tuberculosis, where species diversity is being driven mainly by the activity of mobile DNA elements.  相似文献   

18.
We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies.  相似文献   

19.
The purpose of this study was to provide information about the genetic diversity and prevalent genotype of Mycobacterium tuberculosis in a low-endemic setting in northwestern state of Paraná in Southern Brazil. We employed spoligotyping and mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) techniques to genotype M. tuberculos isisolates from patients with pulmonary tuberculosis (TB). The 93 isolates analyzed by spoligotyping were divided into 36 different patterns, 30 of which were described in the SITVIT database. Latin American and Mediterranean, Haarlem and T families were responsible for 26.9%, 17.2% and 11.8% of TB cases, respectively. From the 84 isolates analyzed by MIRU-VNTR, 58 shared a unique pattern and the remaining 26 belonged to nine clusters. The MIRU loci 40, 23, 10 and 16 were the most discriminatory. A combination of MIRU-VNTR and spoligotyping resulted in 85.7% discriminatory power (Hunter-Gaston index = 0.995). Thus, combining spoligotyping and MIRU-VNTR typing proved to be most useful for epidemiological study in this low-endemic setting in Southern Brazil. The current study demonstrated that there is significant diversity in circulating strains in the city of Maringá and the surrounding regions, with no single genotype of M. tuberculosis predominating.  相似文献   

20.
Mycobacterium africanum is a member of the Mycobacterium tuberculosis complex (MTBC) and an important cause of human tuberculosis in West Africa that is rarely observed elsewhere. Here we genotyped 613 MTBC clinical isolates from Ghana, and searched for associations between the different phylogenetic lineages of MTBC and patient variables. We found that 17.1% (105/613) of the MTBC isolates belonged to M. africanum, with the remaining belonging to M. tuberculosis sensu stricto. No M. bovis was identified in this sample. M. africanum was significantly more common in tuberculosis patients belonging to the Ewe ethnic group (adjusted odds ratio: 3.02; 95% confidence interval: 1.67–5.47, p<0.001). Stratifying our analysis by the two phylogenetic lineages of M. africanum (i.e. MTBC Lineages 5 and 6) revealed that this association was mainly driven by Lineage 5 (also known as M. africanum West Africa 1). Our findings suggest interactions between the genetic diversity of MTBC and human diversity, and offer a possible explanation for the geographical restriction of M. africanum to parts of West Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号