首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  To assess the ability of five probiotic bacteria to bind aflatoxin B1 and to determine the key role of teichoic acids in the binding mechanism.
Methods and Results:  The strains were incubated in aqueous solutions containing aflatoxin B1 (AFB1). The amount of free toxin was quantified by HPLC. Stability of the bacteria–aflatoxin complex was evaluated by repeated washes with buffer. In order to understand the binding process, protoplasts, spheroplasts and cell wall components of two strains were analysed to assess their capacity to bind AFB1. Additionally, the role of teichoic acids in the AFB1 binding process was assessed. Lactobacillus reuteri strain NRRL14171 and Lactobacillus casei strain Shirota were the most efficient strains for binding AFB1. The stability of the AFB1–bacteria complex appears to be related to the binding ability of a particular strain; AFB1 binding was also pH-dependent. Our results suggest that teichoic acids could be responsible for this ability.
Conclusions:  Our results provide information concerning AFB1 binding by previously untested strains, leading to enhanced understanding of the mechanism by which probiotic bacteria bind AFB1.
Significance and Impact of the Study:  Our results support the suggestion that some probiotic bacteria could prevent absorption of aflatoxin from the gastrointestinal tract.  相似文献   

2.
Differences in mitochondrial membrane composition and ultrastructure were studied after storage of cauliflower ( Brassica oleracea , L., Botrytis group) for 5 days at 25°C in air or under controlled atmospheres: 3% O2, 21% O2+ 15% CO2 or 3% O2+ 15% CO2. In air, postharvest senescence involved a 20% decrease in mitochondrial phospholipid content. A large reduction in the relative abundance of phosphati-dylcholine (PC) and in the degree of unsaturation of PC and phosphatidyl ethanolamine (PE) was observed. However, the degree of unsaturation increased in cardiolipin (CL). Storage under 3% O2 did not prevent phospholipid breakdown. Low O2 prevented the relative decrease in PC observed during storage in air and the loss of linoleic acid from PC, but not from PE. This relative protection offered by the low O2 atmosphere was lost under 3% O2+ 15% CO2. The high CO2 atmospheres caused twice as much loss in phospholipids as that observed during storage in air. Extensive loss of mitochondrial protein, a marked decrease in phospholipid to protein ratio, and electron micrograph observations suggest structural alterations in the presence of high CO2.  相似文献   

3.
β-Galactosidase from Lactobacillus kefiranofaciens K-1 was isolated and characterized. Optimal temperature and pH for the enzyme reaction were 50°C and pH 6.5, respectively. Molecular weight was estimated to be approximately 311000. Glucose and galactose inhibited the activity, but the inhibition by galactose was rather weaker than observed in other β-galactosidases. MnCl2 and MgCl2 had no effect on the activity. FeSO4, AgNO3 and HgCl2 acted as the inhibitor. β-Mercaptoethanol and L-cysteine activated the enzyme, while iodoacetamide inhibited the activity. The K m values were 4.92 mmol/1 for ONPG and 1.27 mmol/1 for lactose.  相似文献   

4.
Changes in the microbial flora of pork stored at 4 or 14°C were studied in 5 atm CO2, 1 atm CO2 or 1 atm air. The time needed for the total aerobic count at 4°C to reach 5 × 106 organisms/cm2 was about three times longer in 5 atm CO2 than in 1 atm CO2, and about 15 times longer in 5 atm CO2 than in air. At 14°C there was no difference in growth rate between 5 atm CO2 and 1 atm CO2. No off-odour was detected after storage in 5 atm CO2 for 14 d, but the pork in 1 atm CO2 (6 d) was organoleptically unacceptable.
The predominant organisms on the pork from the processing line were: Flavobacterium spp., Acinetobacter calcoaceticus, Pseudomonas spp., Micrococcus spp. and Moraxella spp. After aerobic storage at 4°C (8 d) or 14°C (3 d) more than 90% of the flora consisted of Pseudomonas spp. At 4°C all Pseudomonas spp. were of the non-fluorescent type, whilst at 14°C 32% were Ps. putida and Ps. fluorescens. After storage in 1 atm CO2 Lactobacillus spp. represented 66% of the flora at 14°C (6 d) and 100% at 4°C (40 d), with L. xylosus dominating. After storage in 5 atm CO2 Lactobacillus spp. constituted the total flora at both temperatures with L. lactis (14°C) and L. xylosus (4°C) dominating.
It was concluded that high partial pressures of CO2 have a considerable shelf-life prolonging effect by (i) selecting the microflora towards Lactobacillus spp. and (ii) reducing the growth rate of these Lactobacillus spp. The controlling and growth inhibitory effect of CO2 was promoted by reduced temperatures.  相似文献   

5.
Cheverry, J. L., Sy, M. O., Pouliquen, J. and Marcellin, P. 1988. Regulation by CO2 of 1-aminocyclopropane-1-carboxylic acid conversion to ethylene in climateric fruits. - Physiol. Plant. 72: 535–540.
A high CO2 concentration (20%) at 20°C rapidly and strongly inhibited the development of the climacteric ethylene burst in apple ( Malus domestica Borkh. cv. Granny Smith) and avocado ( Persea americana Mill. cv. Fuerte) fruits and did not change 1-aminocyclopropane-l-carboxylic acid (ACC) content. Treatment with 20% CO2 markedly decreased ACC-dependent ethylene biosynthesis at 20°C in climacteric pericarp tissues. It is suggested, therefore, that high CO2 levels inhibit conversion of ACC to ethylene.
Synthesis of the ethylene forming enzyme (EFE) was enhanced when intact preclimacteric apples or early climacteric avocados were pretreated for 40 h with 10 μ11-1 ethylene. When CO2 (20%) and ethylene were both applied, a reduced stimulatory effect of ethylene on EFE synthesis was observed. A high CO2 concentration enhanced EFE acivity in excised tissues of apples and avocados incubated with ACC (2 m M ) and cycloheximide (1 m M ) or 2–5-norbornadiene (5 ml 1-1). In the autocatalytic process, 20% CO2 antagonized the stimulation of EFE synthesis by ethylene, but promoted EFE activity.  相似文献   

6.
Purified, right side-out plasmalemma vesicles were isolated from 7-day-old roots of dark-grown wheat ( Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. The oxygen consumption by these vesicles at pH 6.5 in the presence of 1 m M NADH [12–29 nmol (mg protein)−1min−1] was 66% inhibited by 1 m M KCN and ca 40% by 1 m M EDTA. It was unaffected by rotenone, antimycin A, carbonyl cyanide trifluoromethoxyphenylhydrazone (FCCP), mersalyl, chlorotetracycline + Ca2+, and EGTA. Salicylhydroxamic acid (SHAM) and its analogue, m -chlorobenzhydroxamic acid, stimulated the rate of oxygen consumption 10–20 fold in the presence of 1 m M NAD(P)H with an apparent Km (SHAM) of ca 40 μ M (with NADH). The dependence of O2 consumption on NADH concentration in the presence of SHAM (2 m M ) was sigmoidal, possibly due to endogenous catalase activity, and half-maximal rate was obtained at 1.5 m M . In the absence of SHAM the rate increased with increasing acidity and no pH optimum was detectable between pH 4.5 and 8.5. In the presence of SHAM an optimum was observed at pH 6.5 and 0.8 mol of H2O2 was produced for every 1 mol O2 consumed. Endogenous catalase converted this H2O2 to O2 and after complete conversion the stoichiometry was 2 mol NADH consumed for every mol O3. SHAM was not consumed in the reaction. The possible involvement of a cytochrome P-450/420 system is discussed.  相似文献   

7.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   

8.
High yield isolation of mesophyll protoplasts from wheat, barley and rye   总被引:1,自引:0,他引:1  
Efficient procedures are described for high-yield isolation of mesophyll protoplasts from spring wheat ( Triticum aestivum L. cv. Glenlea), winter wheat ( Triticum aestivum L. cv. Frederick), barley ( Hordeum vulgare L. cv. Bruce) and rye ( Secale cereale L. cv. Puma). Factors such as plant age, composition of the incubation medium during isolation, purification procedures and culture medium affect protoplast yield, viability and metabolic competence, as measured by light-dependent CO2 fixation. Optimal osmolarity of the isolation medium was equivalent to 1.8 times that measured in the leaves of all plant material used. The presence of 2 m M ascorbic acid in the preincubation and isolation medium increased the yield by 50% and conserved viability and metabolic competence. The protoplasts were stable for up to 48 h without loss of either viability or of original activity of CO2 fixation, which was in the order of 100 μmol CO2 (mg chl)−1h−1.
In our MC-56 liquid medium these protoplasts regenerated cell walls within 72 h and a few divided.  相似文献   

9.
Abstract— Tritium labeled prostaglandin (PG) endoperoxides PGG2 and PGH2 were rapidly transformed (2 min, 37°C) in good yield (> 50%) by homogenates of whole rat brain into a mixture of products including prostaglandin E2 and F2x: under similar conditions (10min. 37°C) tritium labeled arachidonic acid remained essentially unoxidised. The ratio of PGE-like products: PGF2x formed was approx 0.5 as determined by radio thin layer chromatography. This ratio changed to unity when homogenates of cerebral cortex or cerebral hemispheres were employed. On the other hand cerebellar homogenates formed PGF2x in much greater amounts. The structures of the products were confirmed by mass spectrometry and were further supported by experiments using octadeuterio-endoperoxides. In the latter experiments the resulting PGE2 and PGF2x contained the expected seven and eight deuterium atoms respectively. Evidence for the formation of heptadeuterio PGD2. heptadeuterio-6-keto-PGF1, and hexadeuterio 12-hydroxyheptadecatrienoic acid was also obtained by mass spectrometry. These experiments demonstrate for the first time in brain tissue the biosynthesis of labeled prostaglandins from exogenous tritiated and deuterated precursors.  相似文献   

10.
Quantitative traits, seed size, yield and days to flowering were studied in a chickpea intraspecific recombinant inbred line (RIL) population (F6:7) derived from a Kabuli × Desi cross. The population was evaluated in two locations over 2 years. Days to flowering was also evaluated in the greenhouse under short-day conditions. Seed size was the most heritable trait (0.90), followed by days to flowering (0.36) and yield (0.14). Negative and significant correlation was found between yield and seed size in the second year where environmental homogeneity was tested by analysing the controls included in each assay. During the first year, the environment was not considered homogeneous for yield in either location. Quantitative trait loci (QTLs) for the three characters were detected in linkage group (LG) 4. In relation to seed size, two QTLs were located in LG4 (QTLSW1) and LG8 (QTLSW2). QTLSW1 accounted 20.3% of the total phenotypic variation and QTLSW2 explained 10.1%. A QTL for yield (QTLYD) was located in LG4 explaining around 13% of variation. QTLYD might be pleiotropic with QTLSW1. For days to flowering, a QTL (QTLDF1) was located in LG4 for all environments analysed explaining around 20% of variation. QTLDF1 was closely linked to QTLSW1 and QTLYD in LG4.  相似文献   

11.
Abstract: The relationship between the transport of thyroid hormones and that of amino acids was examined by measuring the uptake of amino acids that are characteristic substrates of systems L, A, and N, and the effect of 3,3',5-triiodo-L-thyronine (T3) on this uptake, in cultured astrocytes. Tryptophan and leucine uptakes were rapid, Na+-independent, and efficiently inhibited by T3 (half-inhibition at ∼ 2 μ M ). Two Na+-independent L-like systems (L1 and L2), common to leucine and aromatic amino acids, were characterized kinetically. System L2 had a low affinity for leucine and tryptophan ( K m= 0.3–0.9 m M ). The high-affinity system L1 ( K m∼ 10 μ M for both amino acids) was competitively inhibited by T3 with a K i of 2–3 μ M (close to the T3 transport K m). Several T3 analogues inhibited system L1 and the T3 transport system similarly. Glutamine uptake and α-(methylamino)isobutyric acid uptake were, respectively, two and 200 times lower than tryptophan and leucine uptakes. T3 had little effect on the uptakes of glutamine and α-(methylamino)isobutyric acid. The results indicate that the T3 transport system and system L1 are related.  相似文献   

12.
Effect of temperature on swimming performance of sea bass juveniles   总被引:1,自引:0,他引:1  
At four temperatures ( T= 15, 20, 25 and 28° C) swimming performance of Dicentrarchus labrax was significantly correlated with total length (23–43 mm L T); r2=0.623–0.829). The relative critical swimming speed ( RU crit= U crit L T−1), where U crit is the critical swimming speed, was constant throughout the L T range studied. The significant effect of temperature on the relative critical swimming speed was described binomially: RU crit=−0.0323T2+ 1.578 T −10.588 (r2=1). The estimated maximum RU crit (8.69 L T s−1) was achieved at 24.4° C, and the 90% performance level was estimated between 19.3 and 29.6° C.  相似文献   

13.
The effects of 80% oxygen–20% carbon dioxide (O2–CO2) and 80% nitrogen–20% carbon dioxide (N2–CO2) atmospheres were compared with respect to the microbial and sensory characteristics of vacuum skin-packaged grain-fed beef steaks stored at −1 and 4 °C. In both N2–CO2 and O2–CO2 atmospheres, lactobacilli were predominant over Brochothrix , pseudomonads, enterobacteria and yeasts and moulds. The results of the current investigation showed that the O2–CO2 atmospheres did not yield total viable counts in excess of 105 cfu cm−2 on beef steaks after 4 weeks of storage. However, the sensory analysis and thiobarbituric acid (TBA) values (as a measure of oxidative rancidity) of the products were unacceptable at this time. In contrast, the N2–CO2 atmospheres yielded maximum total viable counts of approximately 107 cfu cm−2 and the sensory analysis and TBA values of the product were judged to be acceptable after 4 weeks of storage at −1 °C. These results indicate that sensory effects of the product were influenced to a greater extent by the chemical effects of high concentration of O2 on rancidity than by the high levels of lactobacilli.  相似文献   

14.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

15.
Effects of carbon dioxide in anther cultures   总被引:1,自引:0,他引:1  
In anther cultures of Anemone canadensis L., Anemone dichotoma L., Anemone hupehensis Lemoine, Clematis viticella L. and Papaver setigerum DC. a positive relationship between incubation in 2% CO2 and the production of microspore-derived embryos was observed. In anther cultures of Nicotiana tabacum L., Anemone hupehensis and Clematis viticella a combination of cold treatment (7°C) and incubation in 2% CO2 increased embryo production. In Anemone canadensis cold treatment increased the number of proembryos, whereas incubation in 2% CO2 had no effect. In Anemone hupehensis 5% CO2 increased embryo production by more than 2%. In Anemone dichotoma and Papaver setigerum 2% CO2 was the more efficient level. CO2 had no significant effect on pH in the culture medium in anther cultures of Anemone canadensis.  相似文献   

16.
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 μ mol mol–1[CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102·8 ± 4·7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0·05) and root respiration (24%, P < 0·05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.  相似文献   

17.
Otoliths ( n = 847) and gonads ( n = 817) were collected from barrelfish Hyperoglyphe perciformis that were captured by commercial fishermen in the waters off South Carolina and Georgia in 1995, 1997 and 2001–2006. Of the otoliths collected, 97% were aged successfully, and specimens sampled ranged from 5 to 85 years, with a median age of 12 years. The von Bertalanffy growth parameters yielded the equation: Lt = 857·8{1 − e−0·0985[ t −(−8·95)]}, where Lt is fork length ( L F) at time t . Through histological examination, 94% of the gonads assessed were assigned to a sex and reproductive class. Females spawned from September to May with a peak from November to January. Males spawned year round, but had a peak from September to April. The sex ratio (M:F) for this population was 1:1·34. The smallest mature female was 605 mm L F and the youngest immature female was 697 mm L F. Estimates of L F and age at 50% maturity ( L 50 and A 50) for females were 660 mm L F (95% CI = 633–667 mm L F) and 6·08 years (95% CI = 3·50–7·27 years), respectively. The youngest mature male was 575 mm L F and the oldest immature male was 762 mm L F, and no estimates of L 50 or A 50 were made for males. It was determined that barrelfish exhibit the typical characteristics of long life span, slow growth and high age at maturity seen in other deepwater fishes, and that care should be taken to manage this species accordingly.  相似文献   

18.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

19.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

20.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号