首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Analysis of the Colicin V Secretion Pathway   总被引:7,自引:0,他引:7       下载免费PDF全文
Colicin V (ColV) is peptide antibiotic secreted by Escherichia coli through a dedicated exporter composed of three proteins, CvaA, CvaB, and TolC. ColV secretion is independent of the E. coli general secretory pathway (Sec) but requires an N-terminal export signal specific for the CvaAB/TolC exporter. ColV secretion was characterized using genetic and biochemical methods. When the ColV N-terminal extension is replaced with the OmpA signal sequence, the Sec system can localize ColV to the periplasm. Periplasmic ColV is lethal to cells lacking the ColV immunity protein, Cvi. Based on this result, a genetic assay was designed to monitor for the presence of periplasmic ColV during normal CvaAB/TolC mediated secretion. Results indicate that low levels of ColV may be present in the periplasm during secretion. Precursor and mature ColV were also characterized from the wild-type system and in various exporter mutant backgrounds using immunoprecipitation. ColV processing is rapid in wild-type cells, and CvaA and CvaB are critical for processing to occur. In contrast, processing occurs normally, albeit more slowly, in a TolC mutant.  相似文献   

2.
J Hwang  X Zhong    P C Tai 《Journal of bacteriology》1997,179(20):6264-6270
The antibacterial peptide toxin colicin V uses a dedicated signal sequence-independent system for its secretion in Escherichia coli and requires the products of three genes, cvaA, cvaB, and tolC. As a member of the membrane fusion protein family, CvaA is supposed to form a bridge that connects the inner and outer membranes via interaction with CvaB and TolC, respectively. In this study, we investigated the possible interaction of these proteins. When CvaA or CvaB was absent, the corresponding amount of CvaB or CvaA, respectively, was decreased, and the amounts of both proteins were reduced when TolC was depleted. Translational lacZ fusions showed that TolC did not affect the synthesis of either CvaA-beta-galactosidase or CvaB-beta-galactosidase, and CvaA or CvaB did not affect the synthesis of CvaB-beta-galactosidase or CvaA-beta-galactosidase, respectively. However, the stabilities of CvaA and CvaB proteins were affected by the absence of one another and by that of TolC. The instability of CvaA was more severe in TolC-depleted cells than in CvaB-depleted cells. On the other hand, CvaB was less stable in the absence of CvaA than in the absence of TolC. In addition, using a cross-linking reagent, we showed that CvaA directly interacts with both CvaB and TolC proteins. Taken together, these data support the hypothesized structural role of CvaA in connecting CvaB and TolC.  相似文献   

3.
Colicin V (ColV), an antibacterial peptide toxin, uses a dedicated signal sequence-independent export system for its extracellular secretion in Escherichia coli. The products of at least three genes (a chromosomal tolC gene and two plasmid-born cvaA and cvaB genes) are involved in this process. To characterize the gene products, the cvaA gene was subcloned and expressed under the control of T7 RNA polymerase promoter. Two in-frame proteins, CvaA and CvaA*, were expressed and identified. DNA sequences predicted that both proteins have two potential translational initiation sites. N-terminal peptide sequencing showed that the translation of CvaA starts from a TTG, 11 amino acids upstream of the previously proposed ATG initiation site. CvaA* is translated from an upstream ATG. Expression of both CvaA and CvaA* was induced by the iron chelator 2,2'-dipyridyl, indicating that cvaA is negatively regulated at least partially by Fur. CvaA*-depleted cells were found to secrete less ColV, based on reduced activity in the supernatant, than did wild type, which was recovered by the addition of a plasmid producing CvaA*. Interestingly, CvaA*-depleted and wild-type cells had similar levels of intracellular ColV activity. Translational fusions showed that the syntheses of ColV and CvaA are not affected by CvaA* depletion. However, CvaA in CvaA*-depleted cells was less stable than that in wild-type cells, indicating that CvaA* may directly or indirectly affect the stability of CvaA. We conclude that CvaA* is not essential for ColV secretion but that it enhances the ColV secretion by stabilizing the CvaA protein.  相似文献   

4.
The antibacterial peptide toxin colicin V (ColV) uses a dedicated signal sequence-independent export system for its secretion in Escherichia coli that involves the products of three genes, cvaA, cvaB, and tolC in this process. As a member of the membrane fusion protein (MFP) family, the CvaA protein has been proposed to interact with an outer membrane protein TolC via its C-terminal hydrophobic domain. The importance of this domain, which is highly conserved throughout the members of MFP family, was analyzed by use of site-directed mutagenesis of missense or nonsense mutations with suppressors. All the nonsense mutations tested resulted in the loss of ColV secretion, indicating the importance of the C-terminus of CvaA, including the last 100 residue–hydrophilic domain. The missense mutations of several conserved amino acids have no drastic effects. On the other hand, when Glu-248, Ala-262, Thr-274, Leu-285, Gly-313, Ala-322, or Val-335 of CvaA protein was mutated, the secretion of ColV was greatly reduced in certain mutants. While some mutations resulted in structural instability, Glu-248 to Lys and Ala-322 to Gly proteins were relatively stable, but were not functional in ColV secretion. The results indicate that these conserved amino acids are important for the structure and functions of CvaA in the secretion of ColV. Received: 6 February 1999 / Accepted: 26 June 1999  相似文献   

5.
The antibacterial protein toxin colicin V is secreted from Escherichia coli cells by a dedicated export system that is a member of the multicomponent ATP-binding cassette (ABC) transporter family. At least three proteins, CvaA, CvaB, and TolC, are required for secretion via this signal sequence-independent pathway. In this study, the subcellular location and transmembrane organization of membrane fusion protein CvaA were investigated. First, a series of CvaA-alkaline phosphatase (AP) protein fusions was constructed. Inner and outer membrane fractionations of cells bearing these fusions indicated that CvaA is inner membrane associated. To localize the fusion junctions, the relative activities of the fusion proteins, i.e., the amounts of phosphatase activity normalized to the rate of synthesis of each protein, as well as the stability of each fusion, were determined. These results indicated that all of the fusion junctions occur on the same side of the inner membrane. In addition, the relative activities were compared with that of native AP, and the protease accessibility of the AP moieties in spheroplasts and whole cells was analyzed. The results of these experiments suggested that the fusion junctions occur within periplasmic regions of CvA. We conclude that CvaA is an inner membrane protein with a single transmembrane domain near its N terminus; the large C-terminal region extends into the periplasm. This study demonstrates the application of AP fusion analysis to elucidate the topology of a membrane-associated protein having only a single transmembrane domain.  相似文献   

6.
The Serratia marcescens Lip exporter belonging to the ATP-binding cassette (ABC) exporter is known to be involved in signal peptide-independent extracellular secretion of a lipase and a metalloprotease. Although the genes of secretory proteins and their ABC exporters are usually all reported to be linked in several Gram-negative bacteria, neither the lipase nor the protease gene is located close to the Lip exporter genes, lipBCD . A gene ( slaA ) located upstream of the lipBCD genes was cloned, revealing that it encodes a polypeptide of 100 kDa and is partially similar to the Caulobacter crescentus paracrystalline cell surface layer (S-layer) protein. The Lip exporter-deficient mutants of S . marcescens failed to secrete the SlaA protein. Electron micrography demonstrated the cell surface layer of S . marcescens . The S-layer protein was secreted to the cultured media in Escherichia coli cells carrying the Lip exporter. Three ABC exporters, Prt, Has and Hly systems, could not allow the S-layer secretion, indicating that the S . marcescens S-layer protein is strictly recognized by the Lip system. This is the first report concerning secretion of an S-layer protein via its own secretion system.  相似文献   

7.
L Gilson  H K Mahanty    R Kolter 《The EMBO journal》1990,9(12):3875-3884
The extracellular secretion of the antibacterial toxin colicin V is mediated via a signal sequence independent process which requires the products of two linked genes: cvaA and cvaB. The nucleotide sequence of cvaB reveals that its product is a member of a subfamily of proteins, involved in the export of diverse molecules, found in both eukaryotes and prokaryotes. This group of proteins, here referred to as the 'MDR-like' subfamily, is characterized by the presence of a hydrophobic region followed by a highly conserved ATP binding fold. By constructing fusions between the structural gene for colicin V, cvaC, and a gene for alkaline phosphatase, phoA, lacking its signal sequence, it was determined that 39 codons in the N-terminus of cvaC contained the structural information to allow CvaC-PhoA fusion proteins to be efficiently translocated across the plasma membrane of Escherichia coli in a CvaA/CvaB dependent fashion. This result is consistent with the location of point mutations in the cvaC gene which yielded export deficient colicin V. The presence of the export signal at the N-terminus of CvaC contrasts with the observed C-terminal location of the export signal for hemolysin, which also utilizes an MDR-like protein for its secretion. It was also found that the CvaA component of the colicin V export system shows amino acid sequence similarities with another component involved in hemolysin export, HlyD. The role of the second component in these systems and the possibility that other members of the MDR-like subfamily will also have corresponding second components are discussed. A third component used in both colicin V and hemolysin extracellular secretion is the E. coli host outer membrane protein, TolC.  相似文献   

8.
Serratia marcescens produces an abundant extracellular metalloprotease. The gene for this protease had previously been cloned and expressed in Escherichia coli, in which no functional protease could be found. However, the protease gene carries the LXGGXGND repeat motif found in alpha-hemolysin and other proteins secreted by homologous systems. Using a dual-plasmid complementation system, we show that the alpha-hemolysin hlyB and hlyD transport determinants are sufficient to allow secretion and activation of a functional metalloprotease species from E. coli, as are the comparable protease secretion functions of Erwinia chrysanthemi. However, strains expressing protease with the hlyBD transport system are unstable and rapidly lose the ability to produce functional protease.  相似文献   

9.
The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer.  相似文献   

10.
Secretion of the Escherichia coli toxin hemolysin A (HlyA) is catalyzed by the membrane protein complex HlyB-HlyD-TolC and requires a secretion sequence located within the last 60 amino acids of HlyA. The Hly translocator complex exports a variety of passenger proteins when fused N-terminal to this secretion sequence. However, not all fusions are secreted efficiently. Here, we demonstrate that the maltose binding protein (MalE) lacking its natural export signal and fused to the HlyA secretion signal is poorly secreted by the Hly system. We anticipated that folding kinetics might be limiting secretion, and we therefore introduced the "folding" mutation Y283D. Indeed this mutant fusion protein was secreted at a much higher level. This level was further enhanced by the introduction of a second MalE folding mutation (V8G or A276G). Secretion did not require the molecular chaperone SecB. Folding analysis revealed that all mutations reduced the refolding rate of the substrate, whereas the unfolding rate was unaffected. Thus, the efficiency of secretion by the Hly system is dictated by the folding rate of the substrate. Moreover, we demonstrate that fusion proteins defective in export can be engineered for secretion while still retaining function.  相似文献   

11.
The secretion signal of extracellular metalloprotease B that is secreted without a signal peptide by the Gram-negative phytopathogenic bacterium Erwinia chrysanthemi is shown by deletion and gene fusion analyses to be located within the last 40 C-terminal amino acids. Secretion of a peptide containing only this region of the protease requires the same three secretion factors (PrtD, PrtE, and PrtF) that were previously shown to be required for the secretion of the full-length protease. This secretion signal can also be recognized, albeit inefficiently, by the analogous secretion machinery of alpha-hemolysin, another protein with a C-terminal secretion signal that is secreted by some strains of the Gram-negative bacterium Escherichia coli. The secretion signal was fused to an internal 200-amino acid fragment from the sequence of the cytoplasmic protein amylomaltase to promote its specific secretion by the protease secretion pathway. Almost exactly the same sequence as that identified as the protease B secretion signal was also found at the C terminus of metalloprotease C that is also secreted by E. chrysanthemi.  相似文献   

12.
The Serratia marcescens extracellular protease SM is secreted by a signal peptide-independent pathway. When the prtSM gene was cloned and expressed in Escherichia coli, the cells did not secrete protease SM. The lack of secretion could be very efficiently complemented by the Erwinia chrysanthemi protease B secretion apparatus constituted by the PrtD, PrtE, and PrtF proteins. As with protease B and alpha-hemolysin, the secretion signal was located within the last 80 amino acids of the protease. These results indicate that the mechanism of S. marcescens protease SM secretion is analogous to the mechanisms of protease B and hemolysin secretion.  相似文献   

13.
Two ATP-binding cassette (ABC) exporters are present in Pseudomonas fluorescens no. 33; one is the recently reported AprDEF system and the other is HasDEF, which exports a heme acquisition protein, HasA. The hasDEF genes were cloned by DNA hybridization with a DNA probe coding for the LipB protein, one of the components of the Serratia marcescens ABC exporter Lip system. P. fluorescens HasA showed sequence identity of 40 to 49% with HasA proteins from Pseudomonas aeruginosa and Serratia marcescens. The P. fluorescens Has exporter secreted HasA proteins from P. fluorescens and P. aeruginosa but not S. marcescens HasA in Escherichia coli, whereas the Has exporter from S. marcescens allowed secretion of all three HasA proteins. The P. fluorescens HasDEF system also promoted the secretion of the lipase and alkaline protease of P. fluorescens. Hybrid exporter analysis demonstrated that the HasD proteins, which are ABC proteins, are involved in the discrimination of export substrates. Chimeric HasA proteins containing both P. fluorescens and S. marcescens sequences were produced and tested for secretion through the Has exporters. The C-terminal region of HasA was shown to be involved in the secretion specificity of the P. fluorescens Has exporter.  相似文献   

14.
ABC transporters: bacterial exporters.   总被引:1,自引:0,他引:1       下载免费PDF全文
The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review.  相似文献   

15.
胡萝卜软腐欧文氏菌甜菜亚种(Erwinia carotovora subsp. betavasculorum) EcbCSL101菌株具有很强胞外酶分泌活性, 接种非寄主植物烟草引起过敏反应。Southern blotting结果表明EcbCSL101菌株中含有hrpN 基因。PCR扩增含EcbCSL101完整开放阅读框的DNA片段并克隆到表达载体pET28a(+)中。核苷酸序列分析表明, EcbCSL101菌株的hrpN 基因的ORF为1113 bp, 编码36.65 kD HarpinEcbCSL101蛋白(GenBank, DQ355519),与其它几种软腐欧文氏菌Harpin蛋白有较高的同源性。将含有hrpNEcbCSL101基因的重组质粒转化到大肠杆菌JM109(DE3)中进行表达,纯化后的HarpinEcbCSL101能诱导烟草发生过敏反应。  相似文献   

16.
胡萝卜软腐欧文氏茵甜菜亚种(Erwinia carotovora subsp.betavasculorum)EcbCSL101菌株具有很强胞外酶分泌活性,接种非寄主植物烟草引起过敏反应.Southern blotting结果表明EcbCSL101菌株中含有hrpN基因.PCR扩增含EcbCSL101完整开放阅读框的DNA片段并克隆到表达载体pET28a( )中.核苷酸序列分析表明,EcbCSL101菌株的hrpN基因的ORF为1113 bp,编码36.65 kD HarpinEcbCSL101蛋白(GenBank,DQ355519),与其它几种软腐欧文氏菌Harpin蛋白有较高的同源性.将含有hrpNEcbCSL101基因的重组质粒转化到大肠杆菌JM109(DE3)中进行表达,纯化后的HarpinEcbCSL101能诱导烟草发生过敏反应.  相似文献   

17.
Serratia marcescens ATP-binding cassette (ABC) exporter, the Lip system, secretes lipase (LipA(SM)), metalloproteases, and a cell surface layer protein homologue but not a heme acquisition protein, HasA (HasA(SM)). Secretion of HasA(SM) is limited to the Has(SM) system. However, HasA proteins from Pseudomonas fluorescens (HasA(PF)) and Pseudomonas aeruginosa were exported through the Lip and Has(SM) systems. To investigate the specificity in Lip exporter-mediated secretion, secretion analysis was performed using chimeras containing the HasA(PF) and HasA(SM) sequences. The segment Val-Ala-Leu (designated R1 to R3 sites), which is present close to the C terminus of HasA(PF) but not HasA(SM), was revealed to be involved in the substrate specificity of the Lip exporter. Introduction of amino acid substitutions into the R1-R5 region demonstrated that R1, R3, R4, and R5 sites require some specific amino acid residues for Lip-mediated secretion. The amino acid sequence of the region was conserved considerably among the proteins secreted by the Lip exporter. On the contrary, the region was not related to HasA secretion through the Has(SM) system. Interestingly, a typical C-terminal motif, so far regarded as a secretion signal, was not necessary for secretion through either the Lip or the Has(SM) exporter. In LipA(SM) secretion via the Lip system, the typical C-terminal motif was not essential either, but the presence of a sequence similar to Val-Ala-Leu and its location from the C terminus greatly affect the secretion level. Secretion analyses using hybrid exporters and competitors exhibited that the R1-R5 region was recognized by an ABC protein of the Lip exporter, LipB, and that the mutations aborting Lip-mediated secretion in the region resulted in a loss of the affinity to LipB. Thus, a determinant within the secretory protein for Lip-mediated secretion was fully defined.  相似文献   

18.
One of the strategies used by Gram-negative bacteria to secrete proteins across the two membranes which delimit the cells, is sec independent and dedicated to proteins lacking an N-terminal signal peptide. It depends on ABC protein-mediated exporters, which consist of three cell envelope proteins, two inner membrane proteins, an ATPase (the ABC protein), a membrane fusion protein (MFP) and an outer membrane polypeptide. Erwinia chrysanthemi metalloproteases B and C and Serratia marcescens hemoprotein HasA are secreted by such homologous pathways and interact with the ABC protein. Using as protein substrates HasA and GST-PrtC, a chimeric protein which has a glutathione S-transferase moiety fused to a large C-terminal domain of protease C, we developed a simple system to identify proteins bound to the substrate based on substrate affinity-chromatography using heme- or glutathione-agarose. We show an ordered association between the protein substrates and the three exporter components: the substrate recognizes the ABC protein which interacts with the MFP which in turn binds the outer membrane component. Substrate binding is required for assembly of the three components.  相似文献   

19.
Tat- and Sec-targeting signal peptides are specific for the cognate Tat or Sec pathways. Using two reporter proteins, the specificity and convertibility of a Tat signal peptide were assessed in vivo. The specific substitutions by RK, KR and KK for the RR motif of the TorA signal peptide had no effect on the exclusive Tat-dependent export of colicin V (ColV). By introducing multiple substitutions in a typical Tat signal peptide, altered signal peptides lacking the twin-arginine motif were obtained. Interestingly, some of these signal peptides preserved Tat-pathway targeting capacity, but resulted in a loss of exclusivity. In addition, further increasing the hydrophobicity of the n-region without modifying the h-region converted the Tat signal peptides to Sec signal peptides in the ColV transport. Replacement of positively charged residues in the c-region also abolished the Tat-exclusive targeting of ColV or green fluorescent protein (GFP), but the folded GFP could be transported only through the Tat pathway. These results strongly suggest that the overall hydrophobicity of the n-region is one of the determinants of Tat-targeting exclusivity.  相似文献   

20.
The 1706-residue adenylate cyclase toxin (CyaA) of Bordetella pertussis is an RTX protein with extensive carboxy-proximai glycine and aspartate-rich repeats. CyaA does not have a cleavable amino-terminal signal peptide and can be secreted across both bacterial membranes of the Escherichia coli cell envelope by the α-haemolysin (HlyA) translocator (HlyBD/TolC). We performed deletion mapping of secretion signals recognized in CyaA by this heterologous translocator. Truncated proteins with N–terminal and internal deletions were secreted at levels up to 10 times higher than intact CyaA and similar to HlyA. A secretion signal recognized by HlyBD/ToiC was found within the last 74 residues of CyaA. However, secretion of CyaA was reduced but not abolished upon deletion of the last 75 or 217 residues, indicating that at least two additional secretion signals recognized by HlyBD/TolC are within CyaA. One of them was localized to the repeat sequence between residues Asp-1587 to lle-1631. Interestingly, a conserved acidic' motif (Glu/Asp)-(X)11-Asp-(X)3/5-(Glu/Asp)-(X)14-Asp was found in the C-terminal sequences of HlyA, CyaA and the two secreted CyaA derivatives. We speculate that the presence and spacing of acidic residues may be an important feature of secretion signals recognized by the haemolysin translocator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号