首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flow properties of blood in the microcirculation depend strongly on the hematocrit (Hct), microvessel geometry, and cell properties. Previous in vitro studies have measured the radial displacement of red blood cells (RBCs) at concentrated suspensions using conventional microscopes. However, to measure the RBCs motion they used transparent suspensions of ghost red cells, which may have different physical properties than normal RBCs. The present study introduces a new approach (confocal micro-PTV) to measure the motion of labeled RBCs flowing in concentrated suspensions of normal RBCs. The ability of confocal systems to obtain thin in-focus planes allowed us to measure the radial position of individual RBCs accurately and to consequently measure the interaction between multiple labeled RBCs. All the measurements were performed in the center plane of both 50 and 100 microm glass capillaries at Reynolds numbers (Re) from 0.003 to 0.005 using Hcts from 2% to 35%. To quantify the motion and interaction of multiple RBCs, we used the RBC radial dispersion (D(yy)). Our results clearly demonstrate that D(yy) strongly depends on the Hct. The RBCs exhibited higher D(yy) at radial positions between 0.4 and 0.8R and lower D(yy) at locations adjacent to the wall (0.8-1R) and around the middle of the capillary (0-0.2R). The present work also demonstrates that D(yy) tends to decrease with a decrease in the diameter. The information provided by this study not only complements previous investigations on microhemorheology of both dilute and concentrated suspensions of RBCs, but also shows the influence of both Hct and geometry on the radial dispersion of RBCs. This information is important for a better understanding of blood mass transport mechanisms under both physiological and pathological conditions.  相似文献   

2.
The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.  相似文献   

3.
Folding of red blood cells in capillaries and narrow pores.   总被引:1,自引:0,他引:1  
The geometric features of red blood cells in narrow channels in vivo and in vitro were studied by electron microscopy. In rabbit myocardial capillaries about half of the red cells were folded. In polycarbonate filters with pore diameters of 2.2-4.5 microns approximately one third of the trapped red blood cells were folded. The frequency of folding did not depend on the applied pressure, which ranged from 0.1 to 8.0 cm H2O. The folding of the red blood cells in filter pores was used to estimate the bending stiffness of the membrane. An analysis based on the large deformation theory of bending of an elastic sheet was developed. Using pressures of 0.2 and 1.0 cm H2O, the bending stiffness of human red cell membranes was estimated to be approximately 2.4 - 11.6 x 10(-12) dyn-cm, which is in good agreement with other methods. A limiting radius of curvature of about 85 nm was found at higher pressures.  相似文献   

4.
Summary The distribution and number of seamless endothelial cells (SE) were studied in various organs and tissues of rats, rabbits and humans (1) by light microscopy after silver impregnation of the endothelial cell boundaries, (2) by electron microscopy, and (3) in three-dimensional reconstructions of duodenal villi and renal glomeruli. Since SE are situated mostly at branching points, the number of SE is roughly correlated to the number of branchings in the capillary system concerned. SE make up about 50% of all endothelial cells in the renal glomerulum and duodenal villi, and about 30% in the cerebral cortex. However, they rarely occur in bradytrophic tissues. SE have been found exclusively in net capillaries (true capillaries). They seem to be absent in most arterio-venous capillaries (capillary parts of thoroughfare channels), in the capillaries of endocrine glands, as well as in the sinusoidal systems of heart muscle, liver, spleen and bone marrow. It is concluded that SE are developed when tube formation is confined to a single endothelial cell. SE are intercalated most frequently in those capillaries that develop lastly in the terminal vascular bed. The seamless segments are canalized by fusion of intraendothelial vacuoles with pre-existing vascular walls. The existence of SE, confirming the dual structural design of capillary systems, may be used as a detector for net capillaries.  相似文献   

5.
BackgroundEpidemiologic studies suggest that diabetes is associated with an increased risk of cancer. Concurrently, clinical trials have shown that metformin, which is a first-line antidiabetic drug, displays anticancer activity. The underlying mechanisms for these effects are, however, still not well recognized.MethodsMethods based on atomic force microscopy (AFM) were used to directly evaluate the influence of metformin on the nanomechanical and adhesive properties of endothelial and cancer cells in chronic hyperglycemia. AFM single-cell force spectroscopy (SCFS) was used to measure the total adhesion force and the work of detachment between EA.hy926 endothelial cells and A549 lung carcinoma cells. Nanoindentation with a spherical AFM probe provided information about the nanomechanical properties of cells, particularly the length and grafting density of the glycocalyx layer. Fluorescence imaging was used for glycocalyx visualization and monitoring of E-selectin and ICAM-1 expression.ResultsSCFS demonstrated that metformin attenuates adhesive interactions between EA.hy926 endothelial cells and A549 lung carcinoma cells in chronic hyperglycemia. Nanoindentation experiments, confirmed by confocal microscopy imaging, revealed metformin-induced recovery of endothelial glycocalyx length and density. The recovery of endothelial glycocalyx was correlated with a decrease in the surface expression of E-selectin and ICAM-1.ConclusionOur results identify metformin-induced endothelial glycocalyx restoration as a key factor responsible for the attenuation of adhesion between EA.hy926 endothelial cells and A549 lung carcinoma cells.General significanceMetformin-induced glycocalyx restoration and the resulting attenuation of adhesive interactions between the endothelium and cancer cells may account for the antimetastatic properties of this drug.  相似文献   

6.
Motion of nonaxisymmetric red blood cells in cylindrical capillaries   总被引:3,自引:0,他引:3  
We analyze theoretically the single-file flow of asymmetric red blood cells along cylindrical capillaries. Red cells in narrow capillaries are typically nonaxisymmetric, with the cell membrane moving continuously around the cell. In our analysis, cell shape and streamlines of membrane motion are prescribed. Lubrication theory is used to compute velocities and pressures in the fluid surrounding the cell. Conditions of zero lift, zero torque, zero drag, and energy conservation in the cell are imposed. Predicted tank-treading frequency, cell inclination and transverse displacement are small. Cell asymmetry and tank-treading are found to have little effect on the apparent viscosity of blood in capillaries with diameters up to 7 microns.  相似文献   

7.
8.
An extensive programme of comparative nuclear magnetic resonance measurements of the membrane diffusional permeability for water (Pd) and of the activation energy (Ea,d) of this process in red blood cells (RBCs) from 21 mammalian species was carried out. On the basis of Pd, these species could be divided into three groups. First, the RBC's from humans, cow, sheep and “large” kangaroos (Macropus giganteus and Macropus rufus) had Pd values 5 × 10−3 cm/s at 25°C and 7 × 10−3 cm/s at 37°C. The RBCs from other marsupial species, mouse, rat, guinea pig and rabbit, had Pd values roughly twice higher, whereas echidna RBCs were twice lower than human RBCs. The value of Ea,d was in most cases correlated with the values of Pd. A value of Ea,d -26 kJ/mol was found for the RBCs from humans and the species having similar Pd values. Low values of Ea,d (ranging from 15 to 22 kJ/mol) appeared to be associated with relatively high values of Pd. The highest value of Ea,d (33 kJ/mol) was found in echidna RBCs. This points to specialized channels for water diffusion incorporated in membrane proteins; a relatively high water permeability of the RBC membrane could be due to a greater number of channel proteins. There are, however, situations where a very high water permeability of RBCs is associated with a high value of Ea,d (above 25 kJ/mol) as in the case of RBCs from mouse, rat and tree kangaroo. Moreover, it was found that Pd in different species was positively correlated to the RBC membrane phosphatidylcholine and negatively correlated to the sphingomyelin content. This suggests that in addition to the number of channel proteins, other factors are involved in the water permeability of the RBC membrane.  相似文献   

9.
Angiotensin II (ANG II), the major effector molecule of the renin-angiotensin system (RAS), is a powerful vasoactive mediator associated with hypertension and renal failure. In this study the permeability changes and its morphological attributes in endothelial cells of human umbilical vein (HUVECs) were studied considering the potential regulatory role of ANG II. The effects of ANG II were compared with those of vascular endothelial growth factor (VEGF). Permeability was determined by 40 kDa FITC-Dextran and electrical impedance measurements. Plasmalemmal vesicle-1 (PV-1) mRNA levels were measured by PCR. Endothelial cell surface was studied by atomic force microscopy (AFM), and caveolae were visualized by transmission electron microscopy (TEM) in HUVEC monolayers. ANG II (10(-7) M), similarly to VEGF (100 ng/ml), increased the endothelial permeability parallel with an increase in the number of cell surface openings and caveolae. AT1 and VEGF-R2 receptor blockers (candesartan and ZM-323881, respectively) blunted these effects. ANG II and VEGF increased the expression of PV-1, which could be blocked by candesartan or ZM-323881 pretreatments and by the p38 mitogem-activated protein (MAP) kinase inhibitor SB-203580. Additionally, SB-203580 blocked the increase in endothelial permeability and the number of surface openings and caveolae. In conclusion, we have demonstrated that ANG II plays a role in regulation of permeability and formation of cell surface openings through AT1 receptor and PV-1 protein synthesis in a p38 MAP kinase-dependent manner in endothelial cells. The surface openings that increase in parallel with permeability may represent transcellular channels, caveolae, or both. These morphological and permeability changes may be involved in (patho-) physiological effects of ANG II.  相似文献   

10.
High lung inflation pressures compress alveolar septal capillaries, impede red cell transit, and interfere with oxygenation. However, recently introduced acellular hemoglobin solutions may enter compressed lung capillaries more easily than red blood cells. To test this hypothesis, we perfused isolated rat lungs with fluorescently labeled diaspirin cross-linked hemoglobin (DCLHb; 10%) and/ or autologous red cells (hematocrit, 20). Septal capillaries were compressed by setting lung inflation pressure above vascular pressures (zone 1). Examination by confocal microscopy showed that DCLHb was distributed throughout alveolar septa. Furthermore, this distribution was not affected by adding red blood cells to the perfusate. We estimated the maximum acellular hemoglobin mass within septa to be equivalent to that of 15 red blood cells. By comparison, we found an average of 2.7 +/- 4.6 red cells per septum in zone 1. These values increased to 30.4 +/- 25.8 and 50.4 +/- 22.1 cells per septum in zones 2 and 3, respectively. We conclude that perfusion in zone 1 with a 10% acellular hemoglobin solution may increase the hemoglobin concentration per septum up to fivefold compared with red cell perfusion.  相似文献   

11.
12.
Our laboratory previously demonstrated that MAPK activation is an important signal during cytokine-induced endothelial permeability (Nwariaku FE, Liu Z, Terada L, Duffy S, Sarosi G, and Turnage R. Shock 18: 82-85, 2002). Because GTP-binding proteins have been implicated in MAPK activation, we now hypothesize that the GTP-binding protein Rho is a mediator of TNF-induced MAPK activation and increased endothelial permeability. Transmonolayer permeability was assessed in human lung microvascular cells by measuring transmonolayer electrical resistance. MAPK activity was assessed by using a phospho-specific immunoprecipitation kinase assay and by comparing Western blots for phospho-MAPK with total MAPK. MAPK inhibitors used were SB-202190 and PD-098059, whereas Clostridium botulinum C3 transferase was used as a Rho inactivator. Rho-associated coiled-coil kinase was inhibited with Y-27632. TNF increased pulmonary endothelial permeability in vitro and caused a rapid, sustained increase in endothelial p38 and extracellular signal-regulated kinase MAPK activity. Inhibition of p38 and extracellular signal-regulated kinase MAPK with SB-202190 and PD-098059, respectively, decreased TNF-induced endothelial permeability. C3 transferase attenuated TNF-induced MAPK activation and blocked TNF-induced endothelial permeability. Finally, inhibition of Rho-associated coiled-coil kinase with Y-27632 prevented both MAPK activation and TNF-induced decreases in transmonolayer resistance. Rho acts upstream of mitogen-activated protein kinases in mediating TNF-induced pulmonary endothelial leak.  相似文献   

13.
Peroxynitrite, a marker of oxidativestress, is elevated in conditions associated with vascular endothelialcell dysfunction, such as atherosclerosis, preeclampsia, and diabetes.However, the effects of peroxynitrite on endothelial cell function are not clear. The endothelium-derived enzymes nitric oxide synthase (NOS)and prostaglandin H synthase (PGHS) mediate vascular reactivity andcontain oxidant-sensitive isoforms (iNOS and PGHS-2) that can beinduced by nuclear factor (NF)-B activation. We investigated theeffect(s) of peroxynitrite on NOS and PGHS pathways in endothelial cells. We hypothesized that peroxynitrite will increase levels of iNOSand PGHS-2 through activation of NF-B. Western immunoblots ofendothelial cells show that 3-morpholinosydnonimine (SIN-1; 0.5 mM), aperoxynitrite donor, increased iNOS protein mass, which can beinhibited by pyrroline dithiocarbamate (an NF-B inhibitor) (167 ± 24.2 vs. 78 ± 19%, P < 0.05, n = 6). SIN-1 treatment also significantly increasedNF-B translocation into endothelial cell nuclei (135 ± 10%,P < 0.05). Endothelial NOS, PGHS-1, and PGHS-2 proteinlevels were not altered by SIN-1. However, prostacyclin synthaseprotein mass, but not mRNA, was significantly reduced in SIN-1-treatedendothelial cells (78 ± 8.9%, P < 0.05). Our results illustrate novel mechanisms through which peroxynitrite maymodulate vascular endothelial function.

  相似文献   

14.
Anemia and potassium permeability of red blood cells in analbuminemic rats   总被引:2,自引:0,他引:2  
A mutant strain, Nagase analbuminemia rats (NAR), was established from Sprague-Dawley rats. Hematological evaluations were made on NAR of 4 to 52 weeks of age. NAR had an abnormally low number of red blood cells (RBC), a low hematocrit, a reduced hemoglobin concentration and an increased number of reticulocytes. Their plasma electrolyte level was normal. Osmotic fragility of RBC was slightly increased in the rats. Thus NAR shows a slight anemia. The in vitro experiments on RBC were performed. The incubation of blood showed a hemolytic tendency and elevated potassium efflux in the blood of NAR. In addition, an increased efflux of potassium was found in the RBC of NAR, when the RBC was washed with phosphate buffered saline and then was incubated with the saline containing CaCl2. This potassium efflux was prevented in the presence of rat albumin. These findings suggest that the deficiency of serum albumin may increase the permeability of potassium in erythrocyte membrane in NAR.  相似文献   

15.
Signs of stimulated erythropoiesis, such as increased creatine and decreased density of red cells are good indicators of hypoxemia in adults and older children. The sensitivity of both tests in perinatal hypoxia was found to be reduced. The causes for this reduction were investigated.  相似文献   

16.
17.
Hepatocyte growth factor/scatter factor (HGF/SF), a multi function cytokine has been shown to regulate the expression of cell adhesion molecules in endothelial cells. In the current study, we examined the effects of HGF/SF on the function of tight junctions and the expression of occludin in these cells. Stimulation of human vascular endothelial cells with HGF/SF resulted in a concentration dependent increase in the paracellular permeability as measured using fluorescence labelled dextran but a decrease in the transendothelial cell resistance (TER) of the endothelial cells. Western blotting revealed that HGF/SF decreased the level of occludin in the cells, a primary tight junction forming protein. Immunofluorescence study indicated that shortly after treatment with HGF/SF there was a disturbance of the distribution of occludin and then a reduction in the staining of the molecule. It is concluded that HGF/SF decreases the expression of occludin, resulting in the functional change of tight junction.  相似文献   

18.
The cell membrane permeability governs the rate of solute transport into and out of the cell, significantly affecting the cell's metabolic processes, viability, and potential usefulness in both biotechnological applications and physiological systems. Most previous studies of the cell membrane permeability have neglected the possible effects of suspending medium on membrane transport, even though there is extensive experimental evidence that suspending phase composition can significantly affect other properties related to the cell membrane (e.g., cell deformability, fragility, and aggregation rate). This study examined the effects of suspending phase composition (both proteins and electrolytes) on the permeability of human red blood cells to the metabolites creatinine and uric acid. Data were obtained using a stirred ultrafiltration device with direct cell- and proteinfree sampling through a semipermeable membrane. Both the uric acid and creatinine permeabilities were strongly affected by the suspending phase composition, with the permeabilities in different buffer solutions varying by as much as a factor of three. The predominant factors affecting the permeability were the presence (or absence) of chloride, phosphate/adenine, and proteins, although the magnitude and even the direction of these effects were significantly different for creatinine and uric acid transport. The dramatic differences in behavior for uric acid and creatinine reflect the different transport mechanisms for these solutes, with uric acid transported by a carrier-mediated mechanism and creatinine transported by passive diffusion through the lipid bilayer. These results provide important insights into the effects of solution environment on cell membrane transport and other cell membrane-mediated properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
L C Burgess  J O Hall 《Life sciences》2001,69(24):2819-2831
These studies investigated the effects of retinoic acids on endothelial cell proliferation. Three human neoplastic cell lines, U-373 MG glioblastoma, DU-145 prostate carcinoma, and TCCSUP bladder transitional cell carcinoma, were treated with all-trans, 9-cis, or 13-cis retinoic acids at 0.0001 to 10 microM. Hypoxia was used to ensure the expression of the angiogenic phenotype. Conditioned media (CM) were prepared by hypoxic culturing of the tumor cells with retinoic acids for 24 hours. Then CM were transferred to bovine capillary endothelial cells for 48 hours of normoxic culturing, counted and compared to controls. CM from U-373 MG and DU-145 cells, but not TCCSUP cells, treated with all-trans or 9-cis retinoic acids at several concentrations below 1 microM, caused significant (P<0.05) increases in endothelial cell proliferation of between 13 to 18%. Both nonconditioned and conditioned media, for retinoic acid concentrations above 1 microM, inhibited endothelial cell proliferation. All CM for 13-cis retinoic acid decreased endothelial cell proliferation. These results show that the cytotoxicity of retinoic acids and the growth promoting/inhibiting ability of the conditioned media is retinoic acid isoform, time, concentration, and cell type dependent. Most importantly, the conditioned media from tumor cells treated with low concentrations of all-trans or 9-cis retinoic acids significantly increased endothelial cell proliferation.  相似文献   

20.
Summary (3H)DIDS (4,4-diisothiocyano-2,2-ditritiostilbene-disulfonate) was used as a convalent label for membrane sites involved in anion permeability. The label binds to a small, superficially located population of sites, about 300,000 per cell, resulting in almost complete inhibition of anion exchange. The relationship of biding to inhibition is linear suggesting that binding renders each site nonfunctional. In the inhibitory range less than 1% of the label is associated with lipids but at higher concentrations of DIDS, the fraction may be as high as 4%. In ghosts, however, treatment with (3H)DIDS results in extensive labeling of lipids. In cells, a protein fraction that behavens on SDS acrylamide gels as thought its molecular weight is 95,000 daltons (95K) is predominatly labeled by (3H)DIDS. The only other labeled protein is the major sialoglycoprotein which contains less than, 5% of the total bound (3H)DIDS. Because of the linear relationship of binding to inhibition and the unique architecture of the site, it is suggested that the (3H)DIDS-binding site of the 95K protein is the substrate binding site of the anion transport system. The 95K protein is asymmetrically arranged in the membrane with the sites arranged on the outer face accessible to agent in the medium. In leaky ghost, only a few additional binding sites can be reached from the inside of the membrane in the 95K protein, in contrast to the extensive labeling of other membrane proteins in ghosts as compared to cells.Abbreviations DADS 4,4-Diamino-2,2-dihydrostilbene disulfonic acid - DIDS 4,4-Diisothiocyano-2,2-stilbene disulfonic acid - (3H)DADS 4,4-Diamino-2,2-ditritiostilbene disulfonic acid - (3H)DIDS 4,4-Diisothiocyano-2,2-ditritiostilbene disulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号