首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of varying photophase and altitude of origin on the phase angle difference (Ψ) of the circadian rhythm of oviposition during entrainment to light-dark (LD) cycles and the aftereffects of such photophases on the period of the free-running rhythm (τ) in constant darkness (DD) were evaluated in two Himalayan strains of Drosophila ananassae, the high-altitude (HA) strain from Badrinath (5,123 m above sea level=ASL) and the low-altitude (LA) strain from Firozpur (179 m ASL). The Ψ (i.e., the hours from lights-on of the LD cycle to oviposition median) of both strains was determined in LD cycles in which the photophase at 100 lux varied from 6 to 18 h/24 h. The HA strain was entrained by all LD cycles except the one with 6 h photophase in which it was weakly rhythmic, but the LA strain was entrained by only three LD cycles with photophases of 10, 12, and 14 h, but photophases of 6, 8, 16, and 18 h rendered it arrhythmic. Lights-off transition of LD cycles was the phase-determining signal for both strains as oviposition medians of the HA strain occurred∼6 h prior to lights-off, while those of the LA strain occurred∼1 h after lights-off. The Ψ of the HA strain increased from∼2 h in 8 h photophase to∼11 h in 18 h photophase, while that of the LA strain increased from∼11 h in 10 h photophase to∼15 h in 14 h photophase. The aftereffects of photophase of the prior entraining LD cycles on τ in DD were determined by transferring flies from LD cycles to DD. The τ of the HA strain increased from∼19 to∼25 h when transferred to DD from LD 8:16 and LD 18:6 cycles, respectively, whereas the τ of the LA strain increased from∼26 to∼28 h when transferred to DD from LD 10:14 and LD 14:10 cycles, respectively. Thus, these results demonstrate that the photophases of entraining LD cycles and the altitude of origin affected several parameters of entrainment and the period of the free-running rhythm of these strains.  相似文献   

2.
The sensitivity of the circadian photoreceptors mediating entrainment of the eclosion rhythm and phase shifts of oviposition rhythm of the high altitude (HA) strain of Drosophila ananassae originating from Badrinath (5123 m above sea level) in the Himalayas was compared with the low altitude (LA) strain from Firozpur (179 m above sea level). Reduced photic sensitivity of the HA strain is regarded as the result of natural selection, which led to the weakening of the coupling mechanism between the circadian pacemaker and light at the high altitude of origin. The present study was designed to determine whether or not the photic entrainment of the oviposition rhythm of the HA strain of D. ananassae is also altered by the high altitude of its origin, and the results are compared with those of the LA strain. The effects of light intensity on the phase angle difference (Ψ), degree of rhythmicity (R), the percent oviposition in photophase, the threshold light intensity (i.e., the intensity at which stable entrainment occurred), and the saturation light intensity (i.e., the intensity beyond which the values of Ψ or amplitude of rhythm remained unaltered) were determined. Entrainment was studied in light–dark cycles in which the light intensity of 12 h of photophase varied from 1 to 1000 lux, and complete darkness prevailed in all scotophases. The oviposition rhythm of the HA strain was arrhythmic from 1 to 90 lux, weakly rhythmic at 95 lux, but rhythmic at or above 100 lux, while that of the LA strain was weakly rhythmic at 1 lux but rhythmic at or above 2 lux. Oviposition of the HA strain occurred mostly in the photophase, while that of the LA strain occurred in the scotophase; as a result, the oviposition medians of the HA strain were around the subjective forenoons while those of the LA strain were around the subjective evenings. The percent of oviposition in photophase increased from 68 to 98 in the HA strain and from 5 to 33 in the LA strain as light intensity increased from 1 to 1000 lux. In the HA strain, the Ψ values were significantly less and values of R and percent oviposition in photophase were significantly more than those of the LA strain at each level of light intensity. Threshold and saturation intensities for Ψ were 100 and 700 lux, respectively, for the HA strain, but just 2 and 45 lux, respectively, for the LA strain. The saturation intensity for R was 650 and 700 lux for the HA and LA strains, respectively. These results extend the confirmation that the reduced photic sensitivity of the HA strain might have been acquired through natural selection in response to environmental conditions at the high altitude of its origin.  相似文献   

3.
Parameters of oviposition rhythm of Drosophila ananassae strains originating from the equator, 0°N to 22.29°N were variable and latitude dependent. Phase angle difference (Ψ), amplitude of rhythm (R) and the percent oviposition in photophase (POP) were determined in LD 12:12 cycles. Although the R did not vary, the Ψ and POP varied by ∼5 h and 60, respectively. Ψ was positively correlated while the POP was negatively correlated with latitude. Transfers from LD 12:12 cycles to constant darkness initiated free-running rhythms in all strains. Although the R did not vary, the τ varied by ∼3.5 h which was positively correlated with latitude.  相似文献   

4.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (2002). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041-1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

5.
The effects of varying photophase and altitude of origin on the phase angle difference (Ψ) of the circadian rhythm of oviposition during entrainment to light‐dark (LD) cycles and the aftereffects of such photophases on the period of the free‐running rhythm (τ) in constant darkness (DD) were evaluated in two Himalayan strains of Drosophila ananassae, the high‐altitude (HA) strain from Badrinath (5,123 m above sea level=ASL) and the low‐altitude (LA) strain from Firozpur (179 m ASL). The Ψ (i.e., the hours from lights‐on of the LD cycle to oviposition median) of both strains was determined in LD cycles in which the photophase at 100 lux varied from 6 to 18 h/24 h. The HA strain was entrained by all LD cycles except the one with 6 h photophase in which it was weakly rhythmic, but the LA strain was entrained by only three LD cycles with photophases of 10, 12, and 14 h, but photophases of 6, 8, 16, and 18 h rendered it arrhythmic. Lights‐off transition of LD cycles was the phase‐determining signal for both strains as oviposition medians of the HA strain occurred~6 h prior to lights‐off, while those of the LA strain occurred~1 h after lights‐off. The Ψ of the HA strain increased from~2 h in 8 h photophase to~11 h in 18 h photophase, while that of the LA strain increased from~11 h in 10 h photophase to~15 h in 14 h photophase. The aftereffects of photophase of the prior entraining LD cycles on τ in DD were determined by transferring flies from LD cycles to DD. The τ of the HA strain increased from~19 to~25 h when transferred to DD from LD 8:16 and LD 18:6 cycles, respectively, whereas the τ of the LA strain increased from~26 to~28 h when transferred to DD from LD 10:14 and LD 14:10 cycles, respectively. Thus, these results demonstrate that the photophases of entraining LD cycles and the altitude of origin affected several parameters of entrainment and the period of the free‐running rhythm of these strains.  相似文献   

6.
Latitude dependent arrhythmicity in the circadian rhythm of oviposition of Drosophila ananassae strains originating from 8.1°N to 32.7°N was studied by inbreeding them in cycles of 12 h of light at 20 lux and 12 h of darkness. The number of inbreeding generations required to initiate arrhythmicity in oviposition rhythm was dependent on the origin of latitude of the strain. The strains from the lower latitudes became arrhythmic after notably more numbers of generations than those from the higher latitudes. This might be attributed to the higher inherent degree of oviposition rhythmicity in the F1 generation, and enhanced photic sensitivity of the circadian pacemaker mediating entrainment of oviposition rhythm of the strains from lower latitudes as compared to those from the higher latitudes.  相似文献   

7.
Summary Djungarian hamsters (Phodopus sungorus), were exposed to constant light with increasing intensities (20, 60, 350 lux), and wheel running activity was recorded. With increasing light intensity the percentage of hamsters showing a split in their daily activity pattern increased and the free running period was lengthened for both the unsplit and the split state. The fact that the free running period of both states depended on the light intensity together with the observation that the highest incidence of acircadian activity occurred under 350 lux, provoked the idea that the emergence of splitting or acircadian rhythmicity is a direct consequence of the light induced lengthening of the free running period. However, analysis of the data failed to support the idea that emergence of a split or acircadian activity is a threshold phenomenon with respect to the free running period.Due to differences in circadian function some Djungarian hamsters do not exhibit photoinduction following short day exposure. In these individuals splitting also occurred but required exposure to a higher light intensity than in photo-responsive hamsters. This observation is in accordance with the idea that the two phenotypes differ in the interaction of the two component oscillators underlying circadian rhythmicity.Abbreviations LD long day photoperiod - LL constant light - SD short day photoperiod - free running period  相似文献   

8.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683-696, 2001)  相似文献   

9.
The circadian pacemaker controlling the eclosion rhythm of the high altitude Himalayan strains of Drosophila ananassae captured at Badrinath (5123 m) required ambient temperature at 21°C for the entrainment and free-running processes. At this temperature, their eclosion rhythms entrained to 12h light, 12h dark (LD 12:12) cycles and free-ran when transferred from constant light (LL) to constant darkness (DD) or upon transfer to constant temperature at 21°C following entrainment to temperature cycles in DD. These strains, however, were arrhythmic at 13 or 17°C under identical experimental conditions. Eclosion medians always occurred in the thermophase of temperature cycles whether they were imposed in LL or DD; or whether the thermophase coincided with the photophase or scotophase of the concurrent LD 12:12 cycles. The temperature dependent rhythmicity in the Himalayan strains of D. ananassae is a rare phenotypic plasticity that might have been acquired through natural selection by accentuating the coupling sensing mechanism of the pacemaker to temperature, while simultaneously suppressing the effects of light on the pacemaker.  相似文献   

10.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041–1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

11.
The effect of altitude on four basic properties of the pacemaker controlling the circadian rhythm of oviposition in two strains of Drosophila ananassae was determined. The high altitude (HA) strain from Badrinath (5123 m above sea level) had a low amplitude peak in the forenoon while the low altitude (LA) strain from Firozpur (179 m a.s.l.) had a high amplitude peak after the lights-off of LD 12:12 cycles. Free running periods in continuous darkness were about 22.6 and 27.4 h in the HA and LA strains, respectively. The light pulse phase response curve (PRC) for the HA strain showed a low amplitude and a dead zone of 8h; the ratio for the advance to delay region (A/D) was less than 1, while the PRC for the LA strain had a high amplitude, which was devoid of a dead zone and showed a ratio of A/D > 1. The magnitude of the delay phase shifts at CT 18 evoked by light pulses of 1 h duration, but varying light intensity was significantly different in the HA and LA strain, which suggests that the photic sensitivity of the clock photoreceptors mediating the phase shifts had been affected by the altitude.  相似文献   

12.
Effects of aging on the circadian rhythm of locomotor activity in males of Drosophila nasuta were investigated. The adult life of males was divided in 1-3 stages according to spontaneous changes in free-running period x in constant darkness (DD): stage 1, days 1-19; stage 2, days 20-36; stage 3, days 37-43. Stage 1 was characterized by a bimodal activity pattern with a short light-induced morning peak and a prolonged evening peak when the flies were entrained to light-dark cycles of 12 hours of light, 12 hours of darkness (LD 12:12). The morning peak had a phase angle difference Ψm (Ψ, the time from lights on in LD 12:12 cycles to the onset of morning peak) of about 0.1h, while Ψe (Ψ of evening peak) was about 9h at stage 1. The transient morning peak was curtailed at the end of stage 1. At stage 2, the Ψe was about 10h, and the activity end was delayed by an addition of about 3h of activity in the scotophase. The changes in W during DD free runs were determined in two groups of flies: flies reared in LD 12:12 and flies reared in DD. In both groups, W increased from about 23h at stage 1 to about 25h at stage 2. Stage 3 was characterized by arrhythmicity associated with highest mean activity level (total number of passes/fly/day) in the entrained and both free-running groups. The mean activity level increased significantly from stage 1 to stage 3 in all three groups of flies.  相似文献   

13.
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10 h (T20), 12:12 h (T24), and 14:14 h (T28). The mean (±95% confidence interval; CI) free-running period (τ) of the oviposition rhythm was 26.34 ± 1.04 h and 24.50 ± 1.77 h in DD and LL, respectively. The eclosion rhythm showed a τ of 23.33 ± 0.63 h (mean ± 95% CI) in DD, and eclosion was not rhythmic in LL. The τ of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the τ and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

14.
《Chronobiology international》2013,30(4-5):539-552
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10 h (T20), 12:12 h (T24), and 14:14 h (T28). The mean (±95% confidence interval; CI) free-running period (τ) of the oviposition rhythm was 26.34 ± 1.04 h and 24.50 ± 1.77 h in DD and LL, respectively. The eclosion rhythm showed a τ of 23.33 ± 0.63 h (mean ± 95% CI) in DD, and eclosion was not rhythmic in LL. The τ of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the τ and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

15.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

16.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12?h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as “evolved emergence waveforms” (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day. (Author correspondence: or )  相似文献   

17.
The aim of these experiments was to test the effect of a cyclic administration of melatonin, by mimicking the daily rhythm of hormone levels, on the circadian organization of two distinct functions in quail: oviposition and feeding activity. Laying and feeding rhythms under photoperiodic conditions and constant darkness (DD) were investigated. Under DD, where the two rhythms were free running, a daily rhythm of melatonin was administered. In LD 14h:10h, two different individual profiles of laying were established, with stable females laying at the same time each day and delayed females laying progressively later each day. For feeding activity, all birds were clearly synchronized to the photoperiodic cycle. In DD, the laying birds showed a free-running rhythm of oviposition with a period longer than 24 h for both profiles but the delayed profile females had a longer period than stable profile females. In comparison, the free-running period of feeding rhythm of the same birds was shorter than 24 h. A cyclic administration of melatonin had no effect on laying rhythm, which continued to free-run in DD, whereas feeding activity was synchronized as soon as the first cycle of melatonin was administered. From these results, it seems that two different circadian systems drive each of the two types of behavior separately. Melatonin could be the main synchronizer for the temporal control of feeding behavior, but it does not play a part in the control of oviposition in Japanese quail.  相似文献   

18.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light-dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free-running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights-on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

19.
Photic entrainment of animals in the field is basically attributed to their exposure to the dimly lit nights flanked by the dawn and dusk twilight transitions. This implicates the functional significance of the dimly lit nights as that of the twilight transitions. Recently, the authors have demonstrated that the dimly lit night at 0.0006 lux altered the attributes of the circadian rhythm of locomotor activity of Drosophila jambulina. The present study examined whether the durations of such dimly lit nights affect the entrainment and free-running rhythmicity of D. jambulina. Flies were subjected for 10 days to two types of 24-h lighting regimes in which the photophase (L) was at 10 lux for all flies but the scotophase, which varied in duration from 9 to 15?h, was either at 0 lux (D phase) for control flies or 0.0006 lux (the artificial starlight or S phase) for experimental flies. Thereafter, they were transferred to constant darkness (DD) to compare the after-effects of the dimly lit nights on the period (τ) of free-running rhythm in DD with that of the completely dark nights. Control flies were entrained by all LD cycles, but the experimental flies were entrained only by five LS cycles in which the duration of the S phases ranged from 10 to 14?h. The two LS cycles with very short (9?h) and long (15?h) S phases rendered the flies completely arrhythmic. Control flies started activity shortly before lights-on and continued well after lights-off. The experimental flies, however, commenced activity several hours prior to lights-on but ended activity abruptly at lights-off as the result of a negative masking effect of nocturnal illumination. Length of the midday rest was considerably shorter in the control than in the experimental flies in each lighting regime. The active phase in the control flies was predictably shortened; nonetheless, it was invariable in the experimental flies as the nights lengthened. Transfer from lighting regimes to DD initiated robust free-running rhythmicity in all flies including the arrhythmic ones subjected to LS cycles with 9 and 15?h of scotophases. The τ was profoundly affected by the nocturnal irradiance of the prior entraining lighting regime, as it was always shorter in the experimental than in the control flies. Thus, these results indisputably demonstrate the changes in fundamental properties of the circadian pacemaker of D. jambulina were solely attributed to the extremely dim nocturnal irradiance. This strain of D. jambulina is entrained essentially by the dimly lit natural nights, since it is never exposed to the prevailing photic cues such as the twilight transitions or bright photoperiod, owing to the dense vegetation of its habitat. (Author correspondence: )  相似文献   

20.
Light intensity manipulation is an important management tool affecting broiler behaviour and physiology but still there is a debate regarding the optimum level to be used in confinement barns. Two experiments were completed to study the impact of light intensity (1, 10, 20 and 40 lx) on behaviour and diurnal rhythms of broilers raised to 35 d of age. For each experiment, 950 Ross × Ross 308 chicks were housed per room with replication of individual light intensity treatment in two environmentally controlled rooms. Within each large room, a small pen with 25 male and 25 female chicks was used for recording behaviour. Data were analyzed as a randomized complete block design with experiment acting as a block. All chicks were provided with 40 lx intensity and 23 h light until shifting to treatment light intensity and 17 h daylength at 7 d of age. For each replicate, behaviour was recorded for a 24 h period, starting at 16 or 17 d of age. At 23 d of age, three birds per room were bled at the start, middle and end of light and dark periods for melatonin estimation using RIA. When summarized over the 24 and 17 h observation periods, birds exposed to a light intensity of 1 lx rested more (P = 0.01) and preened (P < 0.05) and foraged (P < 0.05) less in comparison to other light intensities. Birds from all treatments exhibited diurnal rhythms for feeding, resting, drinking, walking, standing, foraging and preening behaviours with little or no activity during the 7 h dark phase. The serum melatonin levels at the start, middle and end of light and dark phases were unaffected by light intensity (P > 0.1). In conclusion, light intensity ranges from 1 to 40 lx did not affect melatonin levels or behavioural diurnal rhythms, but birds exposed to a light intensity of 1 lx rested more and preened less, potentially indicating a reduced welfare state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号