首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal passengers and the (aurora) ABCs of mitosis   总被引:28,自引:0,他引:28  
Chromosomal passengers are proteins that move from centromeres to the spindle midzone during mitosis. Recent experiments show that the passengers inner centromere protein (INCENP) and aurora-B kinase are in a macromolecular complex that might also contain a third passenger, survivin. The chromosomal passenger complex functions throughout mitosis in chromosome condensation and segregation, and at the end of mitosis, in the completion of cytokinesis.  相似文献   

2.
Histone modifications coordinate the chromatin localization of key regulatory factors in mitosis. For example, mitotic phosphorylation of Histone H3 threonine‐3 (H3T3ph) by Haspin creates a binding site for the chromosomal passenger complex (CPC). However, how these histone modifications are spatiotemporally controlled during the cell cycle is unclear. Here we show that Plk1 binds to Haspin in a Cdk1‐phosphorylation‐dependent manner. Reducing Plk1 activity decreases the phosphorylation of Haspin and inhibits H3T3ph, particularly in prophase, suggesting that Plk1 is required for initial activation of Haspin in early mitosis. These studies demonstrate that Plk1 can positively regulate CPC recruitment in mitosis.  相似文献   

3.
The chromosomal passenger complex (CPC) coordinates chromosomal and cytoskeletal events of mitosis. The enzymatic core of this complex (Aurora-B) is guided through the mitotic cell by its companion chromosomal passenger proteins, inner centromere protein (INCENP), Survivin and Borealin/Dasra-B, thereby allowing it to act at the right place at the right time. Here, we addressed the individual contributions of INCENP, Survivin and Borealin to the proper functioning of this complex. We show that INCENP has an important role in stabilizing the complex, and that Borealin acts to promote binding of Survivin to INCENP. Importantly, when Survivin is directly fused to INCENP, this hybrid can restore CPC function at the centromeres and midbody, even in the absence of Borealin and the centromere-targeting domain of INCENP. Thus, Survivin is an important mediator of centromere and midbody docking of Aurora-B during mitosis.  相似文献   

4.
The chromosomal passenger complex of Aurora B kinase, INCENP, and Survivin has essential regulatory roles at centromeres and the central spindle in mitosis. Here, we describe Borealin, a novel member of the complex. Approximately half of Aurora B in mitotic cells is complexed with INCENP, Borealin, and Survivin; and Borealin binds Survivin and INCENP in vitro. A second complex contains Aurora B and INCENP, but no Borealin or Survivin. Depletion of Borealin by RNA interference delays mitotic progression and results in kinetochore-spindle misattachments and an increase in bipolar spindles associated with ectopic asters. The extra poles, which apparently form after chromosomes achieve a bipolar orientation, severely disrupt the partitioning of chromosomes in anaphase. Borealin depletion has little effect on histone H3 serine10 phosphorylation. These results implicate the chromosomal passenger holocomplex in the maintenance of spindle integrity and suggest that histone H3 serine10 phosphorylation is performed by an Aurora B-INCENP subcomplex.  相似文献   

5.
New evidence from three separate laboratories, published recently in Science, has shown that centromere positioning of the CPC (chromosomal passenger complex) during early mitosis is achieved through direct interaction between the CPP (chromosomal passenger protein) survivin and histone H3. In essence, an acidic pocket in the BIR (baculovirus inhibitor of apoptosis repeat) domain of survivin binds to the NH2 tail of histone H3 specifically when it is phosphorylated at threonine 3, a mark that is placed by the mitotic kinase, haspin. These data are significant, as they describe a fundamental mechanism, conserved throughout eukaryotes, which is essential for chromosome biorientation and the maintenance of genome stability during mitosis.  相似文献   

6.

Background  

The main role of the chromosomal passenger complex is to ensure that Aurora B kinase is properly localized and activated before and during mitosis. Borealin, a member of the chromosomal passenger complex, shows increased expression during G2/M phases and is involved in targeting the complex to the centromere and the spindle midzone, where it ensures proper chromosome segregation and cytokinesis. Borealin has a consensus CDK1 phosphorylation site, threonine 106 and can be phosphorylated by Aurora B Kinase at serine 165 in vitro.  相似文献   

7.
During mitosis, correct bipolar chromosome attachment to the mitotic spindle is an essential prerequisite for the equal segregation of chromosomes. The spindle assembly checkpoint can prevent chromosome segregation as long as not all chromosome pairs have obtained bipolar attachment to the spindle. The chromosomal passenger complex plays a crucial role during chromosome alignment by correcting faulty chromosome-spindle interactions (e.g. attachments that do not generate tension). In the process of doing so, the chromosomal passenger complex generates unattached chromosomes, a specific situation that is known to promote checkpoint activity. However, several studies have implicated an additional, more direct role for the chromosomal passenger complex in enforcing the mitotic arrest imposed by the spindle assembly checkpoint. In this review, we discuss the different roles played by the chromosomal passenger complex in ensuring proper mitotic checkpoint function. Additionally, we discuss the possibility that besides monitoring the presence of unattached kinetochores, the spindle assembly checkpoint may also be capable of responding to chromosome-microtubule interactions that do not generate tension and we propose experimental set-ups to study this.  相似文献   

8.
The chromosomal passenger complex plays important roles in key mitotic events, including chromosome bi-orientation, the spindle assembly checkpoint, and cytokinesis. Two groups now report the identification of a novel component of the Incenp/survivin/auroraB complex (Gassmann et al., 2004; Sampath et al., 2004) and show that different subcomplexes may exist during mitosis. Exciting data support the involvement of the passenger complex in yet another key event, the assembly of the mitotic spindle.  相似文献   

9.
Chromosomal passengers: the four-dimensional regulation of mitotic events   总被引:24,自引:0,他引:24  
Vagnarelli P  Earnshaw WC 《Chromosoma》2004,113(5):211-222
Chromosomal passengers are proteins that are involved in coordinating the chromosomal and cytoskeletal events of mitosis. The passengers are present in cells as a complex with at least four members: Aurora B, a protein kinase; inner centromeric protein, an activation and targeting subunit; Survivin (function unknown) and Borealin (function also unknown). The kinase is activated at the onset of mitosis, at least partly accomplished by regulation of the levels of its constituents. As mitosis progresses, the kinase complex moves to a highly choreographed series of locations in the mitotic cell, activating key substrates at precise locations and specific times. Functions that require chromosomal passenger activity include chromatin modification (phosphorylation of histone H3), correction of kinetochore attachment errors, aspects of the spindle assembly checkpoint, assembly of a stable bipolar spindle and the completion of cytokinesis. The chromosomal passenger complex provides an essential mechanism for mitotic regulation.  相似文献   

10.
Despite the fact that the chromosomal passenger complex is well known to regulate kinetochore behavior in mitosis, no functional link has yet been established between the complex and kinetochore structure. In addition, remarkably little is known about how the complex targets to centromeres. Here, in a study of caspase-8 activation during death receptor-induced apoptosis in MCF-7 cells, we have found that cleaved caspase-8 rapidly translocates to the nucleus and that this translocation is correlated with loss of the centromere protein (CENP)-C, resulting in extensive disruption of centromeres. Caspase-8 activates cytoplasmic caspase-7, which is likely to be the primary caspase responsible for cleavage of CENP-C and INCENP, a key chromosomal passenger protein. Caspase-mediated cleavage of CENP-C and INCENP results in their mislocalization and the subsequent mislocalization of Aurora B kinase. Our results demonstrate that the chromosomal passenger complex is displaced from centromeres as a result of caspase activation. Furthermore, mutation of the primary caspase cleavage sites of INCENP and CENP-C and expression of noncleavable CENP-C or INCENP prevent the mislocalization of the passenger complex after caspase activation. Our studies provide the first evidence for a functional interplay between the passenger complex and CENP-C.  相似文献   

11.
The chromosomal passenger complex (CPC) of Aurora-B, Borealin, INCENP (inner centromere protein) and Survivin coordinates essential chromosomal and cytoskeletal events during mitosis. Here, we show that the nuclear export receptor Crm1 is crucially involved in tethering the CPC to the centromere by interacting with a leucine-rich nuclear export signal (NES), evolutionarily conserved in all mammalian Survivin proteins. We show that inhibition of the Survivin-Crm1 interaction by treatment with leptomycin B or by RNA-interference-mediated Crm1 depletion prevents centromeric targeting of Survivin. The genetic inactivation of the Survivin-Crm1 interaction by mutation of the NES affects the correct localization and function of Survivin and the CPC during mitosis. By contrast, CPC assembly does not seem to require the Survivin-Crm1 interaction. Our report shows the functional significance of the Survivin-Crm1 interface and provides a novel link between the mitotic effector Crm1 and the CPC.  相似文献   

12.
The chromosomal passenger complex consisting of Borealin, INCENP, Survivin, and Aurora B follows a dynamic pattern of localization to perform its role as a regulator of chromosome alignment, aspects of the spindle assembly checkpoint, and cytokinesis. Post‐translational modifications of chromosomal passenger proteins play an important role in regulating the localization and function of the complex. Borealin displays a slower electrophoretic mobility during mitosis as a result of phosphorylation. Here we show that phosphorylation at S219 is responsible for this mobility shift. An S219A mutant of Borealin that cannot be phosphorylated at this site displays a defect in centromere localization that is evident in cells arrested in mitosis with nocodazole. Further, the S219A form of Borealin is unable to efficiently rescue mitotic defects that occur upon knock‐down of the endogenous protein. These defects are correlated with a reduction in the intensity of Mad2 staining at kinetochores in cells expressing the S219A form of Borealin. These results highlight an important role for phosphorylation of Borealin at S219 in the proper progression through mitosis. J. Cell. Biochem. 111: 1291–1298, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Song L  Li D  Liu R  Zhou H  Chen J  Huang X 《Cell biology international》2007,31(10):1184-1190
Ser-10 phosphorylation of histone H3 is revealed to be relative to chromosome condensation at prophase during mitosis. In this report, we demonstrate using immunofluorescence microscopy that the subcellular distribution of the Ser-10 phosphorylated histone H3 was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis. Co-immunoprecipitation indicates that the Ser-10 phosphorylated histone H3 is associated with the aurora B, and both of the proteins were compacted into a complex with special ternary structure located in the centre of the midbody. When the level of the Ser-10 phosphorylated histone H3 was reduced by RNA interference, the cells formed an aberrant midbody and could not complete cytokinesis successfully. This evidence suggests that Ser-10 phosphorylated histone H3 is a chromosomal passenger protein and plays a crucial role in cytokinesis.  相似文献   

14.
Chromosomal passenger proteins associate with chromosomes early in mitosis and transfer to the spindle at ana/telophase. Recent results show that aurora B/AIM-1 (aurora and Ipl1-like midbody-associated protein kinase), which is responsible for mitotic histone H3 phosphorylation, INCENP (Inner Centromere protein) and Survivin/BIR are in a macromolecular complex as novel chromosomal passenger proteins. Aurora B/AIM-1 can bind to Survivin and the C-terminal region of INCENP, respectively, and colocalizes with both proteins to the centromeres, midzone and midbody. Disruption of either aurora B/AIM-1 or INCENP function leads to sever defects in chromosome segregation and cytokinesis. Moreover, the formation of the central spindle through anaphase to cytokinesis is also disrupted severely. These data suggest that chromosomal passenger complex is required for proper chromosome segregation by phosphorylating histone H3, and cytokinesis by ensuring the correct assembly of the midzone and midbody microtubule. Chromosomal passenger protein complex may couple chromosome segregation with cytokinesis.  相似文献   

15.
SUMO conjugation of cellular proteins is essential for proper progression of mitosis. PIASy, a SUMO E3 ligase, is required for mitotic SUMOylation of chromosomal proteins, yet the regulatory mechanism behind the PIASy-dependent SUMOylation during mitosis has not been determined. Using a series of truncated PIASy proteins, we have found that the N terminus of PIASy is not required for SUMO modification in vitro but is essential for mitotic SUMOylation in Xenopus egg extracts. We demonstrate that swapping the N terminus of PIASy protein with the corresponding region of other PIAS family members abolishes chromosomal binding and mitotic SUMOylation. We further show that the N-terminal domain of PIASy is sufficient for centromeric localization. We identified that the N-terminal domain of PIASy interacts with the Rod/Zw10 complex, and immunofluorescence further reveals that PIASy colocalizes with Rod/Zw10 in the centromeric region. We show that the Rod/Zw10 complex interacts with the first 47 residues of PIASy which were particularly important for mitotic SUMOylation. Finally, we show that depletion of Rod compromises the centromeric localization of PIASy and SUMO2/3 in mitosis. Together, we demonstrate a fundamental mechanism of PIASy to localize in the centromeric region of chromosome to execute centromeric SUMOylation during mitosis.  相似文献   

16.
EVI5 has been shown to be a novel centrosomal protein in interphase cells. In this report, we demonstrate using immunofluorescence microscopy that EVI5 has a dynamic distribution during mitosis, being associated with the mitotic spindle through anaphase and remaining within the midzone and midbody until completion of cytokinesis. Knockdown of EVI5 using siRNA results in a multinucleate phenotype, which is consistent with an essential role for this protein in the completion of cytokinesis. The EVI5 protein also undergoes posttranslational modifications during the cell cycle, which involve phosphorylation in early mitosis and proteolytic cleavage during late mitosis and cytokinesis. Since the subcellular distribution of the EVI5 protein was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis, we used immunoprecipitation and GST pull-down approaches to demonstrate that EVI5 is associated with the aurora B kinase protein complex (INCENP, aurora B kinase and survivin). Together, these data provide evidence that EVI5 is an essential component of the protein machinery facilitating the final stages of cell septation at the end of mitosis.  相似文献   

17.
The chromosomal passenger complex protein INCENP is required in mitosis for chromosome condensation, spindle attachment and function, and cytokinesis. Here, we show that INCENP has an essential function in the specialized behavior of centromeres in meiosis. Mutations affecting Drosophila incenp profoundly affect chromosome segregation in both meiosis I and II, due, at least in part, to premature sister chromatid separation in meiosis I. INCENP binds to the cohesion protector protein MEI-S332, which is also an excellent in vitro substrate for Aurora B kinase. A MEI-S332 mutant that is only poorly phosphorylated by Aurora B is defective in localization to centromeres. These results implicate the chromosomal passenger complex in directly regulating MEI-S332 localization and, therefore, the control of sister chromatid cohesion in meiosis.  相似文献   

18.
Three lines of investigation have suggested that interactions between Survivin and the chromosomal passenger proteins INCENP and Aurora-B kinase may be important for mitotic progression. First, interference with the function of Survivin/BIR1, INCENP, or Aurora-B kinase leads to similar defects in mitosis and cytokinesis [1-7] (see [8] for review). Second, INCENP and Aurora-B exist in a complex in Xenopus eggs [9] and in mammalian cultured cells [7]. Third, interference with Survivin or INCENP function causes Aurora-B kinase to be mislocalized in mitosis in both C. elegans and vertebrates [5, 7, 9]. Here, we provide evidence that Survivin, Aurora-B, and INCENP interact physically and functionally. Direct visualization of Survivin-GFP in mitotic cells reveals that it localizes identically to INCENP and Aurora-B. Survivin binds directly to both Aurora-B and INCENP in yeast two-hybrid and in vitro pull-down assays. The in vitro interaction between Survivin and Aurora-B is extraordinarily stable in that it resists 3 M NaCl. Finally, Survivin and INCENP interact functionally in vivo; in cells in which INCENP localization is disrupted, Survivin adheres to the chromosomes and no longer concentrates at the centromeres or transfers to the anaphase spindle midzone. Our data provide the first biochemical evidence that Survivin can interact directly with members of the chromosomal passenger complex.  相似文献   

19.
Survivin, the smallest inhibitor of apoptosis protein, which has been reported to be highly expressed in almost all known cancers, plays a dual role in survival as well as the proliferation of cancer cells. It inhibits apoptosis by inhibiting caspases as well as facilitating mitosis by becoming a part of chromosomal passenger complex through its BIR5 domain. Docking studies carried out with herbal ligand withanone derived from roots of Withania somnifera have shown strong binding affinity of −19.1088 kJ/mol with BIR5 domain of survivin and in turn interferes with inhibitory action against caspases and may lead to apoptosis. Binding of withanone at BIR5 domain of survivin may also interfere with chromosomal passenger complex and lead to halt the mitotic process within the cancer cell. Docking studies support various experimental outcomes and suggest withanone as a potential candidate molecule in cancer therapy.  相似文献   

20.
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号