首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixteen analogues of ATP have been tested in the aminoacylation reaction of threonyl-tRNA, lysyl-tRNA, and arginyl-tRNA synthetases from baker's yeast. Two compounds are substrates for threonyl-tRNA and for lysyl-tRNA synthetases and five compounds for arginyl-tRNA synthetase. There are six inhibitors for threonyl-tRNA, nine for lysyl-tRNA, and six for arginyl-tRNA synthetase. Their Km and Ki values have been determined. Thus positions 2, 6, 7, 8 and 9 of the purine moiety and 2' and 3' of the sugar moiety of the ATP molecule are important for catalytic action of these aminoacyl-tRNA synthetases. Remarkably arginyl-tRNA synthetase is the first aminoacyl-tRNA synthetase which tolerates bulky substituents at the sugar moiety of ATP. These data fit with the idea that synthetases of subunit structure need magnesium-ion-ATP complexes with an anti conformation as substrates whereas single-chain enzymes accept this substrate in the syn conformation.  相似文献   

2.
Aminoacyl-tRNA synthetases of bakers' yeast (Saccharomyces cerevisiae) were adsorbed to a phosphocellulose (P-cellulose) column, and those specific for tyrosine [EC 6.1.1.1], threonine [EC 6.1.1.3], valine [EC 6.1.1.9], and isoleucine [EC 6.1.1.5] were eluted with several specific tRNAs. Elutions of these synthetases were affected by ATP and/or MgCl2. The effects of ATP and MgCl2 differ with synthetases. Elutions of tyrosyl- and valyl-tRNA synthetases with their cognate tRNAs were more specific in the presence of MgCl2. Isoleucyl-tRNA synthetase was eluted with its cognate tRNA in the presence of both ATP and MgCl2. On the other hand, threonyl-tRNA synthetase was eluted in the absence of ATP and MgCl2 with unfractionated tRNA but not with some non-cognate tRNAs. This suggests that elution of threonyl-tRNA synthetase is highly specific. The present data on the effects of ATP or MgCl2 or both on this affinity elution will be useful for simple and rapid purification of the synthetases.  相似文献   

3.
The wild-type yeast nuclear gene MST1 complements mutants defective in mitochondrial protein synthesis. The gene has been sequenced and shown to code for a protein of 54,030 kDa. The predicted product of MST1 is 36% identical over its 462 residues to the Escherichia coli threonyl-tRNA synthetase. Amino-acylation of wild-type mitochondrial tRNAs with a mitochondrial extract from mst1 mutants fail to acylate tRNAThr1 (anticodon: 3'-GAU-5') but show normal acylation of tRNAThr2 (anticodon: 3'-UGU-5'). These data suggest the presence of two separate threonyl-tRNA synthetases in yeast mitochondria. Antibodies were prepared against a trpE/MST1 fusion protein containing the 321 residues from the amino-terminal region of the E. coli anthranilate synthetase and 118 residues of the mitochondrial threonyl-tRNA synthetase. Antibodies to the fusion protein detect a 50-55-kDa protein in wild type yeast mitochondria but not in mitochondria of a strain in which the chromosomal MST1 gene was replaced by a copy of the same gene disrupted by insertion of the yeast LEU2 gene. The ability of the mutant with the inactive MST1 gene to charge tRNAThr2 argues strongly for the existence of a second threonyl-tRNA synthetase gene.  相似文献   

4.
Threonyl-tRNA synthetase has been shown to be phosphorylated in reticulocytes (Dang, C. V., Tan, E. M., and Traugh, J. A., (1988) FASEB J. 2, 2376-2379). Upon incubation of reticulocytes with 8-bromo-cAMP, phosphorylation of threonyl-tRNA synthetase is stimulated approximately 2-fold, an increase similar to that observed with ribosomal protein S6. To analyze the effects of phosphorylation on activity, threonyl-tRNA synthetase has been purified to apparent homogeneity from rabbit reticulocytes utilizing a four-step purification procedure with the simultaneous purification of seryl-tRNA synthetase. Both synthetases are phosphorylated in vitro by the cAMP-dependent protein kinase. Prior to phosphorylation, the two synthetases produce significant amounts of P1, P4-bis(5'-adenosyl)-tetraphosphate (Ap4A) in the presence of the cognate amino acid and ATP, with activities comparable to that of lysyl-tRNA synthetase. Phosphorylation has no effect on aminoacylation, but an increase in Ap4A synthesis of up to 6-fold is observed with threonyl-tRNA synthetase and 2-fold with seryl-tRNA synthetase. Thus, cAMP-mediated phosphorylation of specific aminoacyl-tRNA synthetases appears to be a potential mode of regulation of Ap4A synthesis in mammals.  相似文献   

5.
6.
Transformation of an E. coli strain with a recombinant plasmid DNA (pB1) encoding the genes for phenylalanyl- and threonyl-tRNA synthetases causes overproduction of these enzymes by about 100- and 5-fold, respectively. A possible effect of the overproduction of the two aminoacyl-tRNA synthetases on intracellular cognate tRNA levels has been searched for by comparing tRNAThr and tRNAPhe aminoacylation capacities in the RNA extracts from strains carrying pB1 or pBR322 plasmid DNA. The answer is that the levels of these tRNAs are not changed by selective increase of the cognate synthetases.  相似文献   

7.
Eight of the mammalian aminoacyl-tRNA synthetases associate as a multienzyme complex, whereas prokaryotic and low eukaryotic synthetases occur only as free soluble enzymes. Association of the synthetases may result in effective compartmentalization of synthetases and suggests the association of the entire protein biosynthetic machinery. To elucidate the structural elements and the nature of the molecular interactions involved in the association of the synthetases, we have cloned and sequenced the complementary DNA coding human aspartyl-tRNA synthetase. The full length cDNA encodes an open reading frame of 500 amino acids with 56% identity with yeast aspartyl-tRNA synthetase. The similarity with yeast aspartyl-tRNA synthetase is unevenly distributed with a high percent of identity at the C-terminus and relatively low identity at the N-terminus. The N-terminal sequence strongly prefers an alpha-helical secondary structure and shows amphiphilic characteristics. Further comparison with the yeast synthetases showed that the basic positively charged helixes in yeast synthetases are evolved to a neutral amphiphilic helix in this mammalian synthetase. The mammalian neutral amphiphilic helix is so far unique among all known sequences of bacterial, yeast, and mammalian synthetases and may account for the association of synthetases in the synthetase complex.  相似文献   

8.
An oligonucleotide probe was used to isolate yeast genomic clones containing DNA sequences with repetitive elements consisting primarily of a tandemly arranged trinucleotide, CAT. Hybridization analyses estimate that the yeast genome contains 40-50 CAT clusters, representing the first repetitive DNA sequence family found in yeast. Sequence analyses show short spacers between the CAT repeats consisting of closely related trinucleotides, primarily CGT. Some of the CAT clusters are located in longer repeating elements with lengths of 7 nucleotides or more. In one case a three-times-repeated 27-nucleotide sequence bears striking homology to the 21-base pair repeat region of the mammalian simian virus 40 promoter element. Hybridization studies further suggest that the "CAT" sequences may be widely dispersed in many diverse organisms including Escherichia coli, Drosophila, and man.  相似文献   

9.
H Itikawa  M Wada  K Sekine  H Fujita 《Biochimie》1989,71(9-10):1079-1087
In Escherichia coli K-12, the heat shock protein DnaK and DnaJ participate in phosphorylation of both glutaminyl-tRNA synthetase and threonyl-tRNA synthetase since when cellular proteins extracted from the dnaK7(Ts), dnaK756(Ts) and dnaJ259(Ts) mutant cells labeled with 32Pi at 42 degrees C were analyzed by two-dimensional gel electrophoresis, no phosphorylation of glutaminyl-tRNA synthetase and threonyl-tRNA synthetase was observed while phosphorylation of both aminoacyl-tRNA synthetases was detected in the samples extracted from wild-type cells.  相似文献   

10.
The DNA nucleotide sequence of the valS gene encoding valyl-tRNA synthetase of Escherichia coli has been determined. The deduced primary structure of valyl-tRNA synthetase was compared to the primary sequences of the known aminoacyl-tRNA synthetases of yeast and bacteria. Significant homology was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. In pairwise comparisons the highest level of homology was detected between the homologous valyl-tRNA synthetases of yeast and E. coli, with an observed 41% direct identity overall. Comparisons between the valyl- and isoleucyl-tRNA synthetases of E. coli yielded the highest level of homology detected between heterologous enzymes (19.2% direct identity overall). An alignment is presented between the three branched-chain aminoacyl-tRNA synthetases (valyl- and isoleucyl-tRNA synthetases of E. coli and yeast mitochondrial leucyl-tRNA synthetase) illustrating the close relatedness of these enzymes. These results give credence to the supposition that the branched-chain aminoacyl-tRNA synthetases along with methionyl-tRNA synthetase form a family of genes within the aminoacyl-tRNA synthetases that evolved from a common ancestral progenitor gene.  相似文献   

11.
We isolated a mouse genomic clone that hybridized with small RNA present in the cytoplasm of the brain. The RNA was about 150 nucleotides long. This RNA seemed to be specific to the brain, since it was not found in the liver or kidney. The clone DNA contained a sequence homologous to 82-nucleotide "identifier" core sequence of cDNA clones of rat. The sequence contained a split promoter for RNA polymerase III and was flanked by a 12-nucleotide direct repeat (ATAAATAATTTA).  相似文献   

12.
A fragment of DNA from the yeast nuclear gene MST1 that codes for the mitochondrial tRNAThr1 synthetase was used as a probe to screen for other yeast threonyl-tRNA synthetase genes. At low stringency, the MST1 probe hybridizes strongly to a 6.6 kb EcoRI fragment of yeast genomic DNA with the homologous gene and in addition hybridizes more weakly to a smaller 3.6 kb EcoRI fragment with a second threonyl-tRNA synthetase gene (THS1). To clone THS1, a library was constructed by ligation to pUC18 of size selected (3-4.5 kb) EcoRI fragments of genomic DNA. Several clones containing the 3.6 kb EcoRI fragment were isolated. A 2,202 nucleotide long open reading frame corresponding to THS1 has been identified in the cloned fragment of DNA. The predicted protein encoded by THS1 is 38% identical to the E. coli threonyl-tRNA synthetase over the latter's length (642 amino acids) and is 42% identical to the predicted MST1 product over its 462 residues. In situ disruption of the chromosomal copy of THS1 is lethal to the cell, indicating that this gene codes for the cytoplasmic threonyl-tRNA synthetase.  相似文献   

13.
Structure and evolution of a group of related aminoacyl-tRNA synthetases   总被引:5,自引:0,他引:5  
A yeast nuclear gene, designated MSK1, has been selected from a yeast genomic library by transformation of a respiratory deficient mutant impaired in acylation of mitochondrial lysine tRNA. This gene confers a respiratory competent phenotype and restores the mutant's ability to acylate the mitochondrial lysine tRNA. The amino acid sequence of the protein encoded by MSK1 is homologous to yeast cytoplasmic lysyl-tRNA synthetase and to the product of the herC gene, which has recently been suggested to code for the Escherichia coli enzyme. These observations indicate that MSK1 codes for the lysyl-tRNA synthetase of yeast mitochondria. Several regions of high primary sequence conservation have been identified in the bacterial and yeast lysyl-tRNA synthetases. These domains are also present in the aspartyl- and asparaginyl-tRNA synthetases, further confirming the notion that all three present-day enzymes originated from a common ancestral gene. The most conserved domain, located near the carboxyl terminal ends of this group of synthetases is characterized by a cluster of glycines and is also highly homologous to the carboxyl-terminal region of the E. coli ammonia-dependent asparagine synthetase. A catalytic function of the carboxyl terminal domain is indicated by in vitro mutagenesis of the yeast mitochondrial lysyl-tRNA synthetase. Replacement of any one of three glycine residues by alanine and in one case by aspartic acid completely suppresses the activity of the enzymes, as evidenced by the inability of the mutant genes to complement an msk1 mutant, even when present in high copy. Other mutations result in partial loss of activity. Only one glycine replacement affects the stability of the protein in vivo. The observed presence of a homologous domain in asparagine synthetase, which, like the aminoacyl-tRNA synthetases, catalyzes the formation of an aminoacyladenylate, suggests that the glycine-rich sequence is part of a catalytic site involved in binding of ATP and of the aminoacyladenylate intermediate.  相似文献   

14.
The gene encoding threonyl-tRNA synthetase (Thr-tRNA synthetase) from the extreme thermophilic eubacterium Thermus thermophilus HB8 has been cloned and sequenced. The ORF encodes a polypeptide chain of 659 amino acids (Mr 75 550) that shares strong similarities with other Thr-tRNA synthetases. Comparative analysis with the three-dimensional structure of other subclass IIa synthetases shows it to be organized into four structural modules: two N-terminal modules specific to Thr-tRNA synthetases, a catalytic core and a C-terminal anticodon-binding module. Comparison with the three-dimensional structure of Escherichia coli Thr-tRNA synthetase in complex with tRNAThr enabled identification of the residues involved in substrate binding and catalytic activity. Analysis by atomic absorption spectrometry of the enzyme overexpressed in E. coli revealed the presence in each monomer of one tightly bound zinc atom, which is essential for activity. Despite strong similarites in modular organization, Thr-tRNA synthetases diverge from other subclass IIa synthetases on the basis of their N-terminal extensions. The eubacterial and eukaryotic enzymes possess a large extension folded into two structural domains, N1 and N2, that are not significantly similar to the shorter extension of the archaebacterial enzymes. Investigation of a truncated Thr-tRNA synthetase demonstrated that domain N1 is not essential for tRNA charging. Thr-tRNA synthetase from T. thermophilus is of the eubacterial type, in contrast to other synthetases from this organism, which exhibit archaebacterial characteristics. Alignments show conservation of part of domain N2 in the C-terminal moiety of Ala-tRNA synthetases. Analysis of the nucleotide sequence upstream from the ORF showed the absence of both any anticodon-like stem-loop structure and a loop containing sequences complementary to the anticodon and the CCA end of tRNAThr. This means that the expression of Thr-tRNA synthetase in T. thermophilus is not regulated by the translational and trancriptional mechanisms described for E. coli thrS and Bacillus subtilis thrS and thrZ. Here we discuss our results in the context of evolution of the threonylation systems and of the position of T. thermophilus in the phylogenic tree.  相似文献   

15.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

16.
Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs.  相似文献   

17.
PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5′ end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs.  相似文献   

18.
19.
20.
With the exception of Escherichia coli lysyl-tRNA synthetase, the genes coding for the different aminoacyl-tRNA synthetases in procaryotes are always unique. Here we report on the occurrence and cloning of two genes (thrSv and thrS2), both encoding functional threonyl-tRNA synthetase in Bacillus subtilis. The two proteins share only 51.5% identical residues, which makes them almost as distinct from each other as each is from E. coli threonyl-tRNA synthetase (42 and 47%). Both proteins complement an E. coli thrS mutant and effectively charge E. coli threonyl tRNA in vitro. Their genes have been mapped to 250 degrees (thrSv) and 344 degrees (thrS2) on the B. subtilis chromosome. The regulatory regions of both genes are quite complex and show structural similarities. During vegetative growth, only the thrSv gene is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号