首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.  相似文献   

2.
通过自由能的差别划分蛋白质连续结构域   总被引:2,自引:1,他引:2  
结构域是蛋白质三级结构下面的结构层次 ,大多数的蛋白质都可分为若干个结构域 ,结构域的不同组合使蛋白质具有不同的三级结构并具有不同的功能。蛋白质结构域的划分在理论与应用上都具有重要意义。但目前对结构域的划分还没有一个十分理想的方法。本文通过计算去折叠自由能来实现对蛋白质结构域的划分。用此方法对 5 0种不同蛋白质序列连续的双结构域进行了分析 ,大多数蛋白质的结构域划分结果与文献报道一致 ,另外一些虽然与文献报道结果不一致 ,但比文献报道的结果更合理  相似文献   

3.
4.
Rnd proteins are Rho family GTP-binding proteins with cellular functions that antagonize RhoA signaling. We recently described a new Rnd3 effector Syx, also named PLEKHG5, that interacts with Rnds via a Raf1-like "Ras-binding domain." Syx is a multidomain RhoGEF that participates in early zebrafish development. Here we demonstrated that Rnd1, Rnd2, and Rnd3 stability is acutely dependent on interaction with their effectors such as Syx or p190 RhoGAP. Although Rnd3 turnover is blocked by treatment of cells with MG132, we provide evidence that such turnover is mediated indirectly by effects on the Rnd3 effectors, rather than on Rnd3 itself, which is not significantly ubiquitinated. The minimal regions of Syx and p190 RhoGAP that bind Rnd3 are not sequence-related but have similar effects. We have identified features that allow for Rnd3 turnover including a conserved Lys-45 close to the switch I region and the C-terminal membrane-binding domain of Rnd3, which cannot be substituted by the equivalent Cdc42 CAAX sequence. By contrast, an effector binding-defective mutant of Rnd3 when overexpressed undergoes turnover at normal rates. Interestingly the activity of the RhoA-regulated kinase ROCK stimulates Rnd3 turnover. This study suggests that Rnd proteins are regulated through feedback mechanisms in cells where the level of effectors and RhoA activity influence the stability of Rnd proteins. This effector feedback behavior is analogous to the ability of ACK1 and PAK1 to prolong the lifetime of the active GTP-bound state of Cdc42 and Rac1.  相似文献   

5.
The GTPase center of the large ribosomal subunit, being a landing platform for translation factors, and regarded as one of the oldest structures in the ribosome, is a universally conserved structure in all domains of life. It is thought that this structure could be responsible for the major breakthrough on the way to the RNA/protein world, because its appearance would have dramatically increased the rate and accuracy of protein synthesis. The major part of this center is recognized as a distinct structural entity, called the stalk. The main functional part of the stalk in all domains of life is composed of small L12/P proteins, which are believed to form an evolutionarily conserved group. However, some data indicate that the bacterial and archaeo/eukaryal proteins are not related to each other structurally, and only a functional relationship may be clearly recognized. To clarify this point, we performed a comprehensive comparative analysis of the L12/P proteins from the three domains of life. The results show that bacterial and archaeo/eukaryal L12/P-proteins are not structurally related and, therefore, might not be linked evolutionarily either. Consequently, these proteins should be regarded as analogous rather than homologous systems and probably appeared on the ribosomal particle in two independent events in the course of evolution.  相似文献   

6.
Nonionic detergent lysates of cells contain a glycolipid-enriched membrane (GEM) fraction. It has been proposed that the GEM fraction represents poorly solubilized GEM microdomains, or lipid rafts. However, the properties of GEM domains in intact cells remain controversial. To study the properties of a GEM-associated protein using confocal microscopy, GFP was targeted to GEM domains using the N-terminal domain of p56(lck) (LckNT). Imaging of HeLa cells expressing LckNT-GFP showed that it was targeted to large actin-rich patches in the plasma membrane that contained up to a fivefold enrichment of protein. Double-labeling experiments showed that the patches were selectively enriched with other GEM-associated molecules. Furthermore, the patches were resistant to extraction by TX-100, and disrupting GEM domains by extracting cholesterol also disrupted colocalization of LckNT-GFP with F-actin. Analogous to the actin-rich patches in HeLa cells, LckNT-GFP colocalized with actin-rich membrane caps in stimulated T cells. Furthermore, disrupting the GEM-targeting signal of LckNT-GFP also inhibited its targeting to membrane caps. Altogether, these findings extend previous studies by showing that association of GEM domains with the actin cytoskeleton provides a mechanism for targeting signaling molecules to membrane patches and caps.  相似文献   

7.
The collagen IV sulfilimine cross-link and its catalyzing enzyme, peroxidasin, represent a dyad critical for tissue development, which is conserved throughout the animal kingdom. Peroxidasin forms novel sulfilimine bonds between opposing methionine and hydroxylysine residues to structurally reinforce the collagen IV scaffold, a function critical for basement membrane and tissue integrity. However, the molecular mechanism underlying cross-link formation remains unclear. In this work, we demonstrate that the catalytic domain of peroxidasin and its immunoglobulin (Ig) domains are required for efficient sulfilimine bond formation. Thus, these molecular features underlie the evolutionarily conserved function of peroxidasin in tissue development and integrity and distinguish peroxidasin from other peroxidases, such as myeloperoxidase (MPO) and eosinophil peroxidase (EPO).  相似文献   

8.
9.
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.  相似文献   

10.
Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently.  相似文献   

11.
12.
Although highly homologous to other methylcytosine-binding domain (MBD) proteins, MBD3 does not selectively bind methylated DNA, and thus the functional role of MBD3 remains in question. To explore the structural basis of its binding properties and potential function, we characterized the solution structure and binding distribution of the MBD3 MBD on hydroxymethylated, methylated, and unmethylated DNA. The overall fold of this domain is very similar to other MBDs, yet a key loop involved in DNA binding is more disordered than previously observed. Specific recognition of methylated DNA constrains the structure of this loop and results in large chemical shift changes in NMR spectra. Based on these spectral changes, we show that MBD3 preferentially localizes to methylated and, to a lesser degree, unmethylated cytosine-guanosine dinucleotides (CpGs), yet does not distinguish between hydroxymethylated and unmethylated sites. Measuring residual dipolar couplings for the different bound states clearly shows that the MBD3 structure does not change between methylation-specific and nonspecific binding modes. Furthermore, residual dipolar couplings measured for MBD3 bound to methylated DNA can be described by a linear combination of those for the methylation and nonspecific binding modes, confirming the preferential localization to methylated sites. The highly homologous MBD2 protein shows similar but much stronger localization to methylated as well as unmethylated CpGs. Together, these data establish the structural basis for the relative distribution of MBD2 and MBD3 on genomic DNA and their observed occupancy at active and inactive CpG-rich promoters.  相似文献   

13.
Intrinsically disordered proteins and regions (IDPs/IDRs) are characterized by well-defined sequence-to-conformation relationships (SCRs). These relationships refer to the sequence-specific preferences for average sizes, shapes, residue-specific secondary structure propensities, and amplitudes of multiscale conformational fluctuations. SCRs are discerned from the sequence-specific conformational ensembles of IDPs. A vast majority of IDPs are actually tethered to folded domains (FDs). This raises the question of whether or not SCRs inferred for IDPs are applicable to IDRs tethered to FDs. Here, we use atomistic simulations based on a well-established forcefield paradigm and an enhanced sampling method to obtain comparative assessments of SCRs for 13 archetypal IDRs modeled as autonomous units, as C-terminal tails connected to FDs, and as linkers between pairs of FDs. Our studies uncover a set of general observations regarding context-independent versus context-dependent SCRs of IDRs. SCRs are minimally perturbed upon tethering to FDs if the IDRs are deficient in charged residues and for polyampholytic IDRs where the oppositely charged residues within the sequence of the IDR are separated into distinct blocks. In contrast, the interplay between IDRs and tethered FDs has a significant modulatory effect on SCRs if the IDRs have intermediate fractions of charged residues or if they have sequence-intrinsic conformational preferences for canonical random coils. Our findings suggest that IDRs with context-independent SCRs might be independent evolutionary modules, whereas IDRs with context-dependent SCRs might co-evolve with the FDs to which they are tethered.  相似文献   

14.
Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge.  相似文献   

15.
16.
In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid-organizing molecule that physically connects these two lipid-storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAV's central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos-Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non-conserved but functionally interchangeable Pos-Seq in ALDI, a bona fide LD-resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD-resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos-Seq, physical proximity between Pos-Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes  相似文献   

17.
We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process.Activation of Eph receptor tyrosine kinases (RTKs) by ephrin ligands stimulates intracellular signaling pathways that regulate diverse cell behaviors such as axon guidance, cell adhesion, and cell migration (1). Activated Eph receptors also initiate negative signaling events that counteract or alter positive signals, thereby modulating biological outcomes. Negative signaling events associated with Eph RTKs include metalloprotease-mediated cleavage of ephrins and trans endocytosis of Eph-ephrin complexes (9, 15, 24). These negative regulatory mechanisms may be important in the repulsive mechanism responsible for retraction of cellular processes. Some studies suggest that c-Cbl, a RING finger E3 ligase, participates in activated Eph receptor signal termination. Ligand stimulation induces the tyrosine phosphorylation of c-Cbl and facilitates the degradation of Eph receptors (19, 23). More recent studies have shown that the E3 ligase activity of c-Cbl is activated through tyrosine phosphorylation by Src family kinases and that c-Cbl is recruited to activated Eph receptors and induces the ubiquitination and degradation of the receptors (6, 14). These studies point to an important role for Cbl family ubiquitin (Ub) ligases in mediating the ubiquitination of activated Eph RTKs and in fine-tuning Eph receptor signaling pathways.Emerging evidence points to a critical role for Eph receptors in human diseases such as diabetes and cancer (2, 13, 17). For example, EphA2 overexpression has been found in many types of malignant tumors. Overexpression of EphA2 in nontransformed epithelial cells enhances tumorigenic and metastatic potential, whereas downregulation of EphA2 expression suppresses tumor growth and metastasis (4). In addition, either soluble ephrin-A ligand or a monoclonal antibody that activates and degrades EphA2 has been shown to inhibit the growth of human tumor xenografts in nude mice (5, 12). More recent evidence reveals that EphA2 cooperates with Erb2 (also known as Neu) to promote tumor progression in mice (3). These findings strongly suggest that EphA2 and possibly other Eph receptors function in tumor progression in the context of either specific oncogenes or tumor suppressors. In this respect, understanding the negative regulation of Eph receptors, such as their degradation, may have important implications in the design of effective antitumor therapeutics.Recently, we showed that Anks family proteins act as key scaffolding molecules in EphA8-mediated signaling pathways (20). Anks family proteins contain six ankyrin repeats at their N terminus, two SAM domains, and a phosphotyrosine-binding (PTB) domain at their C terminus (22). Odin and AβPP intracellular domain-associated protein 1b (AIDA-1b) belong to this protein family. Several isoforms of AIDA-1b have been described, and the regions encoding the PTB domain and the two SAM domains are very well conserved among all isoforms (7). Interestingly, AIDA-1 has been implicated in reducing AβPP processing through the inhibition of γ-secretase activity (7) and in increasing the global protein biosynthetic capacity in response to long-term neuronal stimulation through the regulation of nucleolar assembly (10). Functions attributed to Odin have been limited to its negative role in platelet-derived growth factor (PDGF)-mediated cell proliferation (16). In contrast to AIDA-1 proteins, Odin appears to be abundantly and ubiquitously expressed in many different mammalian cell lines, and its expression is restricted to the mouse embryonic brain rather than the adult brain (20). We recently reported that the PTB domains of Anks family proteins are crucial for the association of these proteins with the juxtamembrane (JM) domain of EphA8; however, an as-yet-unidentified motif in Anks family proteins also contributes to stable complex formation between these two proteins (20).While the SAM domains of Anks family proteins are highly conserved among all isoforms, the function of this domain is not well understood. In the current study, we identified a potential role for SAM domains in EphA signaling. We showed that while the ubiquitin ligase c-Cbl mediates the ubiquitination and degradation of EphA8 upon ligand binding, the SAM domains of Anks family proteins associate with ubiquitinated EphA8 receptor and are critically involved in inhibiting the degradation of EphA2 and EphA8 receptors. These results suggest that the fine-tuning of EphA RTK signaling is regulated by a delicate balance between the activity of c-Cbl E3 ligase and Anks family proteins.  相似文献   

18.
蛋白质结构与功能中的结构域   总被引:4,自引:1,他引:4  
结构域是蛋白质亚基结构中的紧密球状区域.结构域作为蛋白质结构中介于二级与三级结构之间的又一结构层次,在蛋白质中起着独立的结构单位、功能单位与折叠单位的作用.在复杂蛋白质中,结构域具有结构与功能组件与遗传单位的作用.结构域层次的研究将会促进蛋白质结构与功能关系、蛋白质折叠机制以及蛋白质设计的研究.  相似文献   

19.
SH3 and OB are the simplest, oldest, and most common protein domains within the translation system. SH3 and OB domains are β-barrels that are structurally similar but are topologically distinct. To transform an OB domain to a SH3 domain, β-strands must be permuted in a multistep and evolutionarily implausible mechanism. Here, we explored relationships between SH3 and OB domains of ribosomal proteins, initiation, and elongation factors using a combined sequence- and structure-based approach. We detect a common core of SH3 and OB domains, as a region of significant structure and sequence similarity. The common core contains four β-strands and a loop, but omits the fifth β-strand, which is variable and is absent from some OB and SH3 domain proteins. The structure of the common core immediately suggests a simple permutation mechanism for interconversion between SH3 and OB domains, which appear to share an ancestor. The OB domain was formed by duplication and adaptation of the SH3 domain core, or vice versa, in a simple and probable transformation. By employing the folding algorithm AlphaFold2, we demonstrated that an ancestral reconstruction of a permuted SH3 sequence folds into an OB structure, and an ancestral reconstruction of a permuted OB sequence folds into a SH3 structure. The tandem SH3 and OB domains in the universal ribosomal protein uL2 share a common ancestor, suggesting that the divergence of these two domains occurred before the last universal common ancestor.  相似文献   

20.
Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes. In addition, primarily Cx29 and Cx32 are contained deeper in myelin sheaths, where they form autologous gap junctions at sites of uncompacted myelin. The presence of six connexins in macroglial cell populations has revealed unprecedented complexity of potential connexin coupling partners, and with restricted deployment of gap junctional intercellular communication (GJIC) within the “pan-glial” syncytium. New implications for the organization and regulation of spatial buffering mediated by glial GJIC are derived from recent observations of the existence of separate astrocyte anatomical domains, with only narrow regions of overlap between astrocyte processes at domain borders. Thus, widespread spatial buffering in the CNS may occur not successively through a multitude of processes arising from different astrocytes, but rather in a more orderly fashion from one astrocyte domain to another via intercellular coupling that occurs only at restricted regions of overlap between astrocyte domains, augmented by autocellular coupling that occurs within each domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号