首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of HSG is essential for mouse blastocyst formation   总被引:1,自引:0,他引:1  
It has been shown recently that hyperplasia suppressor gene (HSG) is a powerful regulator for cell proliferation and has a critical role in mitochondrial fusion in many cells. However, little is known about its expression, localization, and function during oocyte maturation and early embryogenesis. In this study, with indirect immunofluorescent staining and Western blotting, we found that HSG was expressed in mouse oocytes and preimplantation embryos which primarily exhibited a submembrane distribution pattern in the cytoplasm. Moreover, HSG mainly associated with beta-tubulin during oocyte maturation and early embryonic development. When mouse zygotes were injected with HSG antisense plasmid and cultured in vitro, their capacity to form blastocysts was severely impaired. Our results indicate that HSG plays an essential role in mouse preimplantation development.  相似文献   

2.
Previous studies have suggested that the vav protooncogene plays an important role in hematopoiesis. To study this further, we have ablated the vav protooncogene by homologous recombination in embryonic stem (ES) cells. Homozygous vav (-/-) ES clones differentiate normally in culture and generate cells of erythroid, myeloid and mast cell lineages. Mice heterozygous for the targeted vav allele do not display any obvious abnormalities. However, homozygous embryos die very early during development. Crosses of vav (+/-) heterozygous mice yield apparently normal vav (-/-) E3.5 embryos but not post-implantation embryos (> or = E7.5). Furthermore, homozygous vav (-/-) blastocysts do not hatch in vitro. These results indicate that vav is essential for an early developmental step(s) that precedes the onset of hematopoiesis. Consistent with the phenotypic analysis of vav (-/-) embryos, we have identified Vav immunoreactivity in the extra-embryonic trophoblastic cell layer but not in the inner embryonic cell mass of E3.5 preimplantation embryos or in the egg cylinder of E6.5 and E7.5 post-implantation embryos. These results suggest that the vav gene is essential for normal trophoblast development and for implantation of the developing embryo.  相似文献   

3.
The free-living nematode Caenorhabditis elegans is a well-characterized eukaryotic model organism. Recent glycomic analyses of the glycosylation potential of this worm revealed an extremely high structural variability of its N-glycans. Moreover, the glycan patterns of each developmental stage appeared to be unique. In this study we have determined the N-glycan profiles of wild-type embryos in comparison to mutant embryos arresting embryogenesis early before differentiation and causing extensive transformations of cell identities, which allows to follow the diversification of N-glycans during development using mass spectrometry. As a striking feature, wild-type embryos obtained from liquid culture expressed a less heterogeneous oligosaccharide pattern than embryos recovered from agar plates. N-glycan profiles of mutant embryos displayed, in part, distinct differences in comparison to wild-type embryos suggesting alterations in oligosaccharide trimming and processing, which may be linked to specific cell fate alterations in the embryos.  相似文献   

4.
The preimplantation developmental period is associated with constant changes within the embryo, and some of these changes are apparent on the embryo cell surface. For example, during transition from maternal to embryonic genome control and the compaction and differentiation of embryonic cells, the cell surface undergoes morphologic alterations that reflect changes in gene control. In order to gain insight into the events occurring during embryonic development and cellular differentiation, monoclonal antibodies specific for cell surface antigens (TEC antigens) of embryonic cells have been generated previously and shown to recognise either the carbohydrate moiety of embryoglycan or a developmentally regulated protein epitope. The TEC antigens have been identified on mouse preimplantation embryos, and their expression is specific to particular developmental stages. To determine whether these antigens are conserved in higher mammals, we examined the expression of four TEC antigens (TEC-1 to TEC-4) on in vitro–derived bovine and murine embryos during the preimplantation stage of development. It was found that bovine oocytes and embryos derived from in vitro maturation (IVM) and in vitro fertilisation (IVF) showed stage-specific expression of each of the TEC antigens investigated, with the pattern of expression overlapping but not identical to that seen in the mouse. Immunoprecipitation together with Western blot analysis showed that the TEC monoclonal antibodies recognised a single glycoprotein band with an apparent molecular weight of 70 kDa. Confocal microscopy of immunofluorescence staining of the bovine cells showed this protein to be located on the cell surface. The apparent negative expression of these TEC antigens by immunohistochemistry and immunoprecipitation at particular stages of development appears to be due to the epitopes being inaccessible to the TEC antibodies, since Western blotting revealed the TEC antigens to be present at all stages of development examined. Antibodies identifying stage-specific antigens will provide useful markers to characterise early embryonic cells, monitor normal embryonic development in vitro, and identify cell surface structures having a function in cell-cell interactions during embryogenesis and differentiation. Mol. Reprod. Dev. 49:19–28, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The Notch signaling pathway is an evolutionarily conserved signaling mechanism and mutations in its components disrupt cell fate specification and embryonic development in many organisms. To analyze the in vivo role of the Notch3 gene in mice, we created a deletion allele by gene targeting. Embryos homozygous for this mutation developed normally and homozygous mutant adults were viable and fertile. We also examined whether we could detect genetic interactions during early embryogenesis between the Notch3 mutation and a targeted mutation of the Notch1 gene. Double homozygous mutant embryos exhibited defects normally observed in Notch1-deficient embryos, but we detected no obvious synergistic effects in the double mutants. These data demonstrate that the Notch3 gene is not essential for embryonic development or fertility in mice, and does not have a redundant function with the Notch1 gene during early embryogenesis.  相似文献   

6.
Cell surface carbohydrates undergo marked alterations during mouse embryogenesis. In preimplantation embryos, many carbohydrate markers show stage-specific expression in diverse ways. In early postimplantation embryos, certain carbohydrate markers are localized in defined regions in the embryo. Important carriers of stage-specific carbohydrates are the lactoseries structure (Gal beta 1----4GlcNAc) and the globoseries structure (Gal alpha 1----4Gal). Notably, the glycoprotein-bound large carbohydrate of poly-N-acetyllactosamine-type ([Gal beta 1----4GlcNAc beta 1----3]n) carries a number of markers preferentially expressed in early embryonic cells. These markers are of practical value in analyzing embryogenesis and cell differentiation. For example, in order to monitor in vitro differentiation of multipotential embryonal carcinoma cells, stage-specific embryonic antigen-1 (SSEA-1) and the Lotus agglutinin receptor have been used as markers of the undifferentiated cells, and the Dolichos agglutinin receptor has been used as a marker of extraembryonic endoderm cells. Developmental control of cell surface carbohydrates is attained by controlled expression of activities of key glycosyltransferases; for example, the activity of N-acetylglucosaminide alpha 1----3 fucosyltransferase is lost during in vitro differentiation of embryonal carcinoma cells to parietal endoderm cells, in parallel to the disappearance of SSEA-1. Accumulating evidence suggests that poly-N-acetyllactosamine-type glycans that are abundant in early embryonic cells are involved in cell surface recognition of these cells.  相似文献   

7.
The cytotoxic drug tunicamycin kills cells because it is a specific inhibitor of UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-P transferase (GPT), an enzyme that catalyzes the initial step of the biosynthesis of dolichol-linked oligosaccharides. In the presence of tunicamycin, asparagine-linked glycoproteins made in the endoplasmic reticulum are not glycosylated with N-linked glycans, and therefore may not fold correctly. Such proteins may be targeted for breakdown. Cells that are treated with tunicamycin normally experience an unfolded protein response and induce genes that encode endoplasmic reticulum chaperones such as the binding protein (BiP). We isolated a cDNA clone for Arabidopsis GPT and overexpressed it in Arabidopsis. The transgenic plants have a 10-fold higher level of GPT activity and are resistant to 1 microg/mL tunicamycin, a concentration that kills control plants. Transgenic plants grown in the presence of tunicamycin have N-glycosylated proteins and the drug does not induce BiP mRNA levels as it does in control plants. BiP mRNA levels are highly induced in both control and GPT-expressing plants by azetidine-2-carboxylate. These observations suggest that excess GPT activity obviates the normal unfolded protein response that cells experience when exposed to tunicamycin.  相似文献   

8.
《Epigenetics》2013,8(9):969-975
Recent findings shed light on the coordination of two fundamental, yet mechanistically opposing, processes in the early mammalian embryo. During the oocyte-to-embryo transition and early preimplantation development nuclear reprogramming occurs. This resetting of the epigenome in maternal and paternal pronuclei to a ground state is the essential step ensuring totipotency in the zygote, the first embryonic stage. Radical, global DNA demethylation, which occurs actively in the paternal and passively in the maternal genome, is a prominent feature of nuclear reprogramming; yet, this process poses a danger to a subset of methylated sequences that must be preserved for their germline to soma inheritance. Genomic imprinting and its importance were demonstrated three decades ago by a series of experiments generating non-viable mammalian uniparental embryos. Indeed, imprinted loci, gene clusters with parent-of-origin specific gene expression patterns, must retain their differential methylation status acquired during gametogenesis throughout embryogenesis and in adult tissues. It is just recently that the molecular players that protect/maintain imprinting marks during reprogramming in preimplantation embryos have been identified, in particular, an epigenetic modifier complex formed by ZFP57 and TRIM28/KAP1. The interaction of these and other molecules with the newly formed embryonic chromatin and imprinted genes is discussed and highlighted herein.  相似文献   

9.
The modification of proteins at asparagine residues with oligosaccharides (N-glycans) plays critical roles in diverse cell functions. N-glycans originate from a common lipid-linked oligosaccharide (LLO) precursor whose synthesis is initiated by the Dol-P-dependent GlcNAc-1-P transferase (GPT) encoded by an essential ALG7 gene. To identify cellular processes affected by ALG7 and N-glycosylation, we replaced the genomic copy of ALG7 with its hypomorphic allele in two genetically distinct haploid yeast cells. We show that ALG7 knockdown gave rise to an unexpected phenotype of mitochondrial dysfunction. The alg7 mutants did not grow on glycerol and DNA arrays revealed the absence of mitochondrial genes' expression. Accordingly, the alg7 mutants displayed no detectable mtDNA and respiratory activity. Both mutants exhibited diminished abundance of LLO and under-glycosylation of carboxypeptidase Y (CPY). Moreover, another N-glycosylation mutant with a LLO defect, alg6, was respiratory deficient. Collectively, our studies provide evidence that the dysregulation of N-glycosylation in haploid yeast cells leads to mitochondrial dysfunction.  相似文献   

10.
Recent findings shed light on the coordination of two fundamental, yet mechanistically opposing, processes in the early mammalian embryo. During the oocyte-to-embryo transition and early preimplantation development nuclear reprogramming occurs. This resetting of the epigenome in maternal and paternal pronuclei to a ground state is the essential step ensuring totipotency in the zygote, the first embryonic stage. Radical, global DNA demethylation, which occurs actively in the paternal and passively in the maternal genome, is a prominent feature of nuclear reprogramming; yet, this process poses a danger to a subset of methylated sequences that must be preserved for their germline to soma inheritance. Genomic imprinting and its importance were demonstrated three decades ago by a series of experiments generating non-viable mammalian uniparental embryos. Indeed, imprinted loci, gene clusters with parent-of-origin specific gene expression patterns, must retain their differential methylation status acquired during gametogenesis throughout embryogenesis and in adult tissues. It is just recently that the molecular players that protect/maintain imprinting marks during reprogramming in preimplantation embryos have been identified, in particular, an epigenetic modifier complex formed by ZFP57 and TRIM28/KAP1. The interaction of these and other molecules with the newly formed embryonic chromatin and imprinted genes is discussed and highlighted herein.  相似文献   

11.
C. elegans is proving useful for the study of cell determination in early embryos. Breeding experiments with embryonic lethal mutants show that abnormal embryogenesis often results from defective gene function in the maternal parent, suggesting that much of the information for normal embryonic development is laid down during oogenesis. Analysis of a gut-specific differentiation marker in cleavage-arrested embryos has provided evidence that the potential for this differentiation behaves as a cell-autonomous internally segregating developmental determinant, which is present from the 2-cell stage onward and is partitioned into the gut precursor cell during early cleavage divisions. Visible prelocalized cytoplasmic granules that segregate with a particular cell lineage have heen observed in the embryonic germline precursor cells by fluorescent antibody staining. Whether these granules play a role in germline determina... [remainder of abstract missing in original]  相似文献   

12.
《Plant science》1986,44(1):65-71
The antibiotic tunicamycin which specifically blocks the first step in the lipid-linked oligosaccharide pathway is capable of arresting somatic embryogenesis in a reversible way. At the same drug concentration cell proliferation is not affected. The quantitative and qualitative changes induced by tunicamycin in glycolipids and glycoproteins are the same in embryogenic and non-embryogenic conditions and this might therefore indicate some proteins whose glycosylation is essential for development.  相似文献   

13.
Focal adhesion kinase (FAK) is a critical mediator of signal transduction by integrins and growth factor receptors in a variety of cells including endothelial cells (ECs). Here, we describe EC-specific knockout of FAK using a Cre-loxP approach. In contrast to the total FAK knockout, deletion of FAK specifically in ECs did not affect early embryonic development including normal vasculogenesis. However, in late embryogenesis, FAK deletion in the ECs led to defective angiogenesis in the embryos, yolk sac, and placenta, impaired vasculature and associated hemorrhage, edema, and developmental delay, and late embryonic lethal phenotype. Histologically, ECs and blood vessels in the mutant embryos present a disorganized, detached, and apoptotic appearance. Consistent with these phenotypes, deletion of FAK in ECs isolated from the floxed FAK mice led to reduced tubulogenesis, cell survival, proliferation, and migration in vitro. Together, these results strongly suggest a role of FAK in angiogenesis and vascular development due to its essential function in the regulation of multiple EC activities.  相似文献   

14.
15.
The first step in the assembly of the dolichol-linked oligosaccharides required for asparagine-linked glycosylation in eukaryotes is catalyzed by a tunicamycin-sensitive, dolichol phosphate-dependent N-acetylglucosamine-1-phosphate transferase (GPT). A fragment of the gene encoding the enzyme from Chinese hamster ovary (CHO) cells was partially cloned and characterized by a novel strategy. By stepwise selection, CHO cells were made 80-fold resistant to tunicamycin and found to have 10-fold elevated levels of GPT activity. Using a cloned segment of the yeast ALG-7 gene, which encodes the putative GPT from yeast, an amplified gene was identified by Southern blotting of the CHO DNA and a 6.6-kilobase segment of the gene was molecularly cloned. A family of RNA molecules in the 2.0-2.2-kilobase range identified with a probe from this gene was overexpressed in the resistant cells. The cloned DNA revealed a 24-amino acid residue sequence that was 92% conserved with the corresponding yeast sequence.  相似文献   

16.
Mammalian oocytes and zygotes have the unique ability to reprogram a somatic cell nucleus into a totipotent state. SUV39H1/2‐mediated histone H3 lysine‐9 trimethylation (H3K9me3) is a major barrier to efficient reprogramming. How SUV39H1/2 activities are regulated in early embryos and during generation of induced pluripotent stem cells (iPSCs) remains unclear. Since expression of the CRL4 E3 ubiquitin ligase in oocytes is crucial for female fertility, we analyzed putative CRL4 adaptors (DCAFs) and identified DCAF13 as a novel CRL4 adaptor that is essential for preimplantation embryonic development. Dcaf13 is expressed from eight‐cell to morula stages in both murine and human embryos, and Dcaf13 knockout in mice causes preimplantation‐stage mortality. Dcaf13 knockout embryos are arrested at the eight‐ to sixteen‐cell stage before compaction, and this arrest is accompanied by high levels of H3K9me3. Mechanistically, CRL4‐DCAF13 targets SUV39H1 for polyubiquitination and proteasomal degradation and therefore facilitates H3K9me3 removal and zygotic gene expression. Taken together, CRL4‐DCAF13‐mediated SUV39H1 degradation is an essential step for progressive genome reprogramming during preimplantation embryonic development.  相似文献   

17.
l(2)dtl (lethal (2) denticleless), is an embryonic lethal homozygous mutation initially identified in Drosophila melanogaster that produces embryos that lack ventral denticle belts. In addition to nucleotide sequence, bioinformatic analysis has revealed a conservation of critical functional motifs among the human L2DTL, mouse L2dtl, and Drosophila l(2)dtl proteins. The function of the L2DTL protein in the development of mammalian embryos was studied using targeted disruption of the L2dtl gene in mice. The knock-out resulted in early embryonic lethality. L2dtl-/- embryos were deformed and terminated development at the 4-8-cell stage. Microinjection of a small interfering RNA (siRNA) vector (siRNA-L2dtl) into the two-cell stage nuclei of wild-type mouse embryos led to cell cycle progression failure, termination of cell division, and, eventually, embryonic death during the preimplantation stage. Morphological studies of the embryos 54 h after injection showed fragmentation of mitotic chromosomes and chromosomal lagging, hallmarks of mitotic catastrophe. The siRNA-L2dtl-treated embryos eventually lysed and failed to develop into blastocysts after 72 h of in vitro culturing. However, the embryos developed normally after they were microinjected into one nucleus of the two-celled embryos. The siRNA studies in HeLa cells showed that L2dtl protein depletion results in multinucleation and down-regulation of phosphatidylinositol 3-kinase, proliferating cell nuclear antigen, and PTTG1/securin, which might partially explain the mitotic catastrophe observed in L2dtl-depleted mouse embryos. Based on these findings, we conclude that L2dtl gene expression is essential for very early mouse embryonic development.  相似文献   

18.
Embryonic stem cells are established directly from the pluripotent epiblast of the preimplantation mouse embryo. Their derivation and propagation are dependent upon cytokine-stimulated activation of gp130 signal transduction. Embryonic stem cells maintain a close resemblance to epiblast in developmental potency and gene expression profile. The presumption of equivalence between embryonic stem cells and epiblast is challenged, however, by the finding that early embryogenesis can proceed in the absence of gp130. To explore this issue further, we have examined the capacity of gp130 mutant embryos to accommodate perturbation of normal developmental progression. Mouse embryos arrest at the late blastocyst stage when implantation is prevented. This process of diapause occurs naturally in lactating females or can be induced experimentally by removal of the ovaries. We report that gp130(-/-) embryos survive unimplanted in the uterus after ovariectomy but, in contrast to wild-type or heterozygous embryos, are subsequently unable to resume development. Inner cell masses explanted from gp130(-/-) delayed blastocysts produce only parietal endoderm, a derivative of the hypoblast. Intact mutant embryos show an absence of epiblast cells, and Hoechst staining and TUNEL analysis reveal a preceding increased incidence of cell death. These findings establish that gp130 signalling is essential for the prolonged maintenance of epiblast in vivo, which is commonly required of mouse embryos in the wild. We propose that the responsiveness of embryonic stem cells to gp130 signalling has its origin in this adaptive physiological function.  相似文献   

19.
20.
Similarities in the differentiation of mouse embryos and ES cell embryoid bodies suggest that aspects of early mammalian embryogenesis can be studied in ES cell embryoid bodies. In an effort to understand the regulation of cellular differentiation during early mouse embryogenesis, we altered the expression of the Pem homeobox-containing gene in ES cells. Pem is normally expressed in the preimplantation embryo and expressed in a lineage-restricted fashion following implantation, suggesting a role for Pem in regulating cellular differentiation in the early embryo. Here, we show that the forced expression of Pem from the mouse Pgk-1 promoter in ES cells blocks the in vitro and in vivo differentiation of the cells. In particular, embryoid bodies produced from these Pgk-Pem ES cells do not differentiate into primitive endoderm or embryonic ectoderm, which are prominent features of early embryoid bodies from normal ES cells. This Pgk-Pem phenotype is also different from the null phenotype, as embryoid bodies derived from ES cells in which endogenous Pem gene expression has been blocked show a pattern of differentiation similar to that of normal ES cells. When the Pgk-Pem ES cells were introduced into subcutaneous sites of nude mice, only undifferentiated EC-like cells were found in the teratomas derived from the injected cells. The Pem-dependent block of ES cell differentiation appears to be cell autonomous; Pgk-Pem ES cells did not differentiate when mixed with normal, differentiating ES cells. A block to ES cell differentiation, resulting from the forced expression of Pem, can also be produced by the forced expression of the nonhomeodomain region of Pem. These studies are consistent with a role for Pem in regulating the transition between undifferentiated and differentiated cells of the early mouse embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号