首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen-alkaline phosphatase membranes have been prepared, and their enzymatic kinetics and in-vitro stability analyzed. Collagen-alkaline phosphatase dispersions were prepared by complexation in aqueous alkaline solution and cast into membranes by controlled dehydration. These membranes were then crosslinked in glutaraldehyde solution, washed thoroughly, and dried. Crosslinking in glutaraldehyde confers increased stability of catalytic activity to these collagen-enzyme membranes, especially when compared to uncrosslinked collagen-alkaline phosphatase membranes assayed in a similar fashion. Crosslinking in glutaraldehyde also appears to inhibit gross leaching of the soluble enzyme from the carrier matrix. Apparent intrinsic kinetic properties of the collagen-alkaline phosphatase conjugate were analyzed in membranes of various thickness in order to determine the effect of internal diffusion resistances on the kinetics of the immobilized enzyme. The apparent Michaelis constant of the immobilized enzyme decreased as a function of decreasing membrane thickness, reaching an observed apparent Michaelis constant of 1.6mM at a membrane thickness of 0.2 mm. Extrapolation of the apparent Michaelis constant to zero membrane thickness, using a linear plot of the natural logarithm of the apparent Michaelis constant versus membrane thickness, allowed estimation of the true Michaelis constant of the immobilized enzyme. The estimated value for the true Michaelis constant of the collagen-alkaline phosphatase complex was 0.7mM. This value agrees closely with reported values for several purified mammalian alkaline phosphatase. The apparent Michaelis constant for the 0.2mm collagen-enzyme membrane agrees closely with the Michaelis constant reported for an alkaline phosphate purified from chondrocyte matrix vesicles. The intrinsic maximum reaction velocity (V(m)) of the collagen-enzyme complex was estimated b plotting the observed reaction rate as a function of decreasing membrane thickness and extrapolating such plots, at various substrate concentrations, to the limiting case of zero membrane thickness. The maximum reaction velocity was obtained by the common intercept of these plots as they approached zero membrane thickness.  相似文献   

2.
A new enzymatic method has been developed for the determination of inorganic phosphate, in which purine nucleoside phosphorylase and xanthine oxidase are used as indicator enzymes. This method has been applied to the assay of nucleoside diphosphatase. Incidental to this work, the apparent Michaelis constant of phosphate for calf spleen purine nucleoside phosphorylase was determined to be 0.25 mm, and the extinction coefficient of uric acid at 293 nm and pH 7.4 was found to be 13.0 × 103m?1 cm?1.  相似文献   

3.
Acid phosphatase-1 (orthophosphoric monoester phosphohydrolase, acid optimum, EC 3.1.3.2), the major phosphatase in adult Drosophila melanogaster, has been purified to apparent homogeneity. The final product is a glycoprotein homodimer with a subunit molecular weight of about 50,000, as measured by its electrophoretic mobility in denaturing conditions on polyacrylamide gels containing sodium dodecyl sulfate. It has a turnover number of 1720 1-naphthyl phosphate molecules hydrolyzed/s by each acid phosphatase-1 molecule at 37 degrees C, pH 5.0. An average fly contains about 5 ng of enzyme. Pure acid phosphatase-1 displays heterogeneity in isoelectric focusing, with a major band at pH 5.3. The enzyme hydrolyzes a wide variety of phosphate monoesters, including AMP, glucose 6-phosphate, ATP, choline phosphate, or phosphoproteins. The maximum reaction rates are different for all substrates, and some substrates appear to inhibit the reaction at high substrate concentrations. The Michaelis constants for 1-naphthyl phosphate and p-nitrophenyl phosphate are 79 microM and 68 microM, respectively, at pH 5.0 and 37 degrees C. The optimum pH level for 1-naphthyl phosphate is 4.5. Acid phosphatase-1 is inhibited by L(+)-tartrate (but not D(-)-tartrate), phosphate, and fluoride. The reaction rate increases 2.1-fold for every 10 degrees C rise in temperature. Above 48 degrees C, the rate of thermal denaturation is greater than the rate of the enzyme reaction.  相似文献   

4.
1. Sugar-cane leaf pyruvate,P(i) dikinase was prepared free of enzymes that would interfere with studies on the stoicheiometry and mechanism of the reaction it catalyses. The reaction was unequivocally shown to involve the conversion of equimolar amounts of pyruvate, ATP and P(i) into phosphoenolpyruvate, AMP and PP(i). 2. The purified enzyme was stable at pH8.3 only if stored at about 20 degrees in the presence of Mg(2+) and a thiol-reducing reagent, care being taken to prevent the oxidation of the thiol. 3. The apparent Michaelis constants for phosphoenolpyruvate and PP(i) were 0.11mm and 0.04mm respectively and that for AMP was less than 4mum. 4. At pH8.3 the initial velocity of the reaction was about 6 times as fast in the direction towards phosphoenolpyruvate synthesis as in the reverse direction. 5. With the exception of ATP, all the products of the reaction in both directions were inhibitory. 6. The phosphate groups of PP(i) were derived from P(i) and from the terminal phosphate of ATP. 7. Isotope-exchange studies indicated that the reaction proceeds in the following steps:Enzyme+ATP+P(i) right harpoon over left harpoon Enzyme-P+AMP+PP(i)Enzyme-P+pyruvate right harpoon over left harpoon Enzyme+phosphoenolpyruvate  相似文献   

5.
3-Hexulose phosphate synthase and phospho-3-hexuloisomerase were purified 40- and 150-fold respectively from methane-grown Methylococcus capsulatus. The molecular weights of the enzymes were approximately 310000 and 67000 respectively, as determined by gel filtration. Dissociation of 3-hexulose phosphate synthase into subunits of molecular weight approx. 49000 under conditions of low pH or low ionic strength was observed. Within the range of compounds tested, 3-hexulose phosphate synthase is specific for formaldehyde and d-ribulose 5-phosphate (forward reaction) and d-arabino-3-hexulose 6-phosphate (reverse reaction), and phospho-3-hexuloisomerase is specific for d-arabino-3-hexulose 6-phosphate (forward reaction) and d-fructose 6-phosphate (reverse reaction). A bivalent cation is essential for activity and stability of 3-hexulose phosphate synthase; phospho-3-hexuloisomerase is inhibited by many bivalent cations. The pH optima of the two enzymes are 7.0 and 8.3 respectively and the equilibrium constants are 4.0x10(-5)m and 1.9x10(2)m respectively. The apparent Michaelis constants for 3-hexulose phosphate synthase are: d-ribulose 5-phosphate, 8.3x10(-5)m; formaldehyde, 4.9x10(-4)m; d-arabino-3-hexulose 6-phosphate, 7.5x10(-5)m. The apparent Michaelis constants for phospho-3-hexuloisomerase are: d-arabino-3-hexulose 6-phosphate, 1.0x10(-4)m; d-fructose 6-phosphate, 1.1x10(-3)m.  相似文献   

6.
Moore TS 《Plant physiology》1974,54(2):164-168
The synthesis of phosphatidylglycerol in castor bean (Ricinus communis var. Hale) endosperm tissue was found to be located in both the endoplasmic reticulum and mitochondrial fractions separated on sucrose density gradients. The enzyme of both fractions attained maximum activity at 5 mm Mn(2+), 0.075% Triton X-100, and pH 7.3. The addition of dithiothreitol produced little effect, but sulfhydryl inhibitors reduced activity in both systems. Cytidine diphosphate-diglyceride exhibited an apparent Michaelis constant for the endoplasmic reticulum enzyme of 2.8 mum and for the mitochondrial enzyme of 2.0 mum; the maximum reaction rate was achieved at about 20 mum. For the second substrate, glycerol-phosphate, the apparent Michaelis constant for both fractions was about 50 mum and maximum velocity was reached at 400 mum. The specific activity of the mitochondrial enzyme was generally twice that of the endoplasmic reticulum.  相似文献   

7.
Lu TS  Mazelis M 《Plant physiology》1975,55(3):502-506
ORNITHINE: 2-oxoacid aminotransferase (EC 2.6.1.13) has been purified over 400-fold with a total recovery of 14% from acetone powders of cotyledons of germinating squash (Cucurbita pepo, L.) seedlings. The pH optimum of the transamination between l-ornithine and alpha-ketoglutarate is 8 and the Michaelis constants are 4.7 mm and 6.3 mm, respectively. The enzyme has a molecular weight of 48,000 as determined by gel filtration. The reaction is essentially specific for alpha-ketoglutarate as the amino group acceptor. The enzyme is inhibited very strongly by hydroxylamine, and less severely by NaCN and isonicotinylhydrazide. No inhibition is observed in the presence of 10 mml-cysteine. The energy of activation is 7.6 kcal/mole. The stability of the enzyme preparation is enhanced by the presence of dithioerythritol and glycerol. The enzyme activity of the most purified fraction is stimulated 30% by the addition of pyridoxal phosphate; however, the evidence for the unequivocal involvement of pyridoxal phosphate was inconclusive.  相似文献   

8.
Differences between both true and apparent rate constants and Michaelis constants have been examined. Rate constants of elementary stages of real mechanisms are true ones. True Michaelis constant Km is expressed by equation Km = (k(-1) + k2)/k. True constants may be determined for reliable mechanism only for which the equation of initial rate was obtained which displays physical sense of these constants and permits to find the method of their calculation. The true constant values are independent of concentration of reactants, activators, inhibitors, extraneous agents and pH. The apparent rate constants are such constants of the composite reaction which are observed when this reaction is described by the equation of simple reaction. Michaelis constant calculated by a half of the ultimate constant is an apparent constant. The apparent constants may be functions of several true rate constants and/or concentrations of reacting substances. The evident physical sense of apparent constants being absent, only formal relation between the reaction rate and reactant concentration independent of the investigated mechanism is provided.  相似文献   

9.
Kinetics and specificity of T4 polynucleotide kinase.   总被引:12,自引:0,他引:12  
J R Lillehaug  K Kleppe 《Biochemistry》1975,14(6):1221-1225
The kinetics of T4 polynucleotide kinase has been investigated at pH 8.0 and 37 degrees. Double reciprocal plots of initial rates vs. substrate concentrations as well as product inhibition studies have indicated that the enzyme reacts according to the ordered sequential mechanism shown in eq 2 in the text for phosphorylation of a DNA molecule. Based on this mechanism the rate equation for the overall reaction was deduced and the various kinetic constants estimated. Hill plots indicated little or no interaction between active sites in the enzyme. The apparent Michaelis constants and V-max were determined at a fixed ATP concentration, 66 muM, for a number of different substrates varying in chain length, base composition, and nature of the sugar, and a wide variation was found. For the nucleoside 3'-monophosphates tested both the apparent Michaelis constant and V-max values were from approximately 2 to 5 times larger than for the corresponding oligonucleotide. The following orders were obtained with regard to apparent Michaelis constants and V-max for the nucleoside 3'-monophosphates investigated: Michaelis constant, rGP greater than rUp greater than rCp greater than rAp greater than dTp; V-max, rGp greater than rCp greater than rAp greater than dTp greater than rUp. Somewhat similar results were also obtained with the deoxyoligonucleotides tested.  相似文献   

10.
To obtain information on the biological significance of yeast fructose-2,6-bisphosphate 6-phosphatase, kinetic data of the purified enzyme [(1987) Eur. J. Biochem. 164, 27-30] have been measured. Maximal activity was found between pH 6 and 7, the apparent Michaelis constant with fructose 2,6-bisphosphate was 7.2 microM at pH 6.0 and 79 microM at pH 7.0. Concentrations required for 50% inhibition of the enzyme at pH 6.0 were 8 microM Fru2P, 45 microM G1c6P, 80 microM Fru6P and 200 microM inorganic phosphate. The known intracellular steady-state level of about 10 microM fructose 2,6-bisphosphate in the presence of glucose is likely to be the result of a balance between the rapid synthesis of fructose 2,6-bisphosphate catalyzed by 6-phosphofructose 2-kinase and a fructose 2,6-bisphosphate degrading activity. The biological function of fructose-2,6-bisphosphate 6-phosphatase with an apparent Michaelis constant between 7 and 79 microM fructose 2,6-bisphosphate at pH 6-7 is therefore suggested to participate in the maintenance of a steady-state level of fructose 2,6-bisphosphate in a concentration range that fits well with the Michaelis constant of the enzyme.  相似文献   

11.
Substrate-stabilization of uridine phosphorylase (uridine:orthophosphate ribosyltransferase, EC 2.4.2.3), thymidine phosphorylase (thymidine:orthophosphate deoxyribosyltransferase, EC 2.4.2.4) and purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) from Escherichia coli was investigated by heat-inactivation experiments. Nucleoside substrates stabilized uridine phosphorylase and purine-nucleoside phosphorylase, but not thymidine phosphorylase. Aglycone substrates stabilized only uridine phosphorylase. Phosphate or pentose-1-phosphate ester substrates stabilized all three enzymes. The appropriate pentose-1-phosphate ester was a more effective stabilizer than was phosphate with all three enzymes. In previous reports dealing with the kinetic analysis of these phosphorylases, sequential mechanisms were proposed. Each enzyme appeared to have different sequence of substrate addition. The substrate-stabilization patterns reported here are consistent with the proposed mechanisms.  相似文献   

12.
β-Glucosidase (EC 3.2.1.21) was immobilized in fibroin film by using a photo-crosslinking agent, 4,4′-diazidostilbene-2,2′-disodium sulfonate. Crosslinking and immobilization reactions proceeded by light irradiation for 20 min in air. The immobilized enzyme showed approximately 50% of its native activity with an apparent Michaelis constant of 3.1 mm. The Michaelis constant of the native enzyme was 2.3 mm. Some properties of the immobilized and native enzymes were compared.  相似文献   

13.
1. A re-examination of the catalase-hydrogen peroxide reaction at high substrate concentrations, by using the quenched-flow technique, reveals a more complex kinetic behaviour than that previously reported. At constant reaction time the catalatic process obeys Michaelis-Menten kinetics, but the apparent Michaelis constant is markedly time-dependent, whereas the conventional catalase activity is independent of time. 2. The kinetics of the ;time effect' were analysed and it is suggested that the effect derives from the formation of an inactive species (thought to be catalase Compound II). The process shows Michaelis-Menten kinetics, with a Michaelis constant equal to that for the catalatic reaction in the limit of zero reaction time. 3. It has been confirmed that certain buffer components have marked inhibitory effects on the catalatic reaction and that, in unbuffered systems, catalatic activity is substantially independent of pH in the range 4.7-10.5.  相似文献   

14.
P Bade  W Christ  D Rakow  H Coper 《Life sciences》1976,19(12):1833-1844
Catechol-O-methyltransferase activity from supernatant of brain, red blood cells and liver of the rat were characterized by the following items: 1) substrate specificity with respect to five catechol substrates, 2) meta/para ratio of O-methylation, 3) apparent Michaelis constants, 4) pH dependence of reaction rate. Under identical conditions, a progressive decrease in the rate of O-methylation by rat liver supernatant can be noticed in the sequence of 3.4-dihydroxy-acetophenone > 3.4-dihydroxybenzoic acid > 3.4-dihydroxyphenylacetic acid. Using 3.4-dihydroxybenzaldehyde as substrate, the meta/para ratio of O-methylation and the apparent Michaelis constants are similar for catechol-O-methyltransferase from brain and red blood cells and differ from the values obtained with liver supernatant. In phosphate buffer, the pH curves are almost identical for catechol-O-methyltransferase from brain, red blood cells and liver, in glycine/NaOH buffer, however, the liver enzyme shows a broad peak. From our experiments it is obvious that the biochemical characteristics selected are similar for soluble catechol-O-methyltransferase from brain and erythrocytes which differ from that obtained with liver enzyme.  相似文献   

15.
Phosphate determination by enzymatic colorimetric assay   总被引:1,自引:0,他引:1  
A direct colorimetric assay for inorganic phosphate in serum is described. The system is based on utilization of the enzymes, purine-nucleoside phosphorylase and xanthine oxidase, to generate superoxide ions. The superoxide is measured in the presence of an electron mediator compound with 3-(4',5'-dimethyl-2-thiazolyl)-2,4-diphenyl-2H-tetrazolium bromide as the chromogen. The high absorbance of this chromogen between 550 and 660 nm affords useful results with a sample/reagent volume ratio as low as 1:100. A single working reagent is used, and the reaction is complete in 15 min at room temperature. The standard curve is linear for inorganic phosphate concentrations as high as 4.9 mmol/liter. Analytical recovery of phosphate in human sera averages 100%. Within-run precision study gives CV less than or equal to 1.0%. The results of this method compare closely (r greater than 0.99) with those obtained by the semidine method (recommended standard). The method lends itself to automation.  相似文献   

16.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40 degrees C. The Michaelis constant (Km) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.  相似文献   

17.
Initial velocities for the urokinase (EC 3.4.99.26)-catalysed conversion of glutamic acid plasminogen to plasmin (EC 3.4.21.7) have been determined at various urokinase and glutamic acid plasminogen concentrations. As has been found for the corresponding reaction with lysine plasminogen this conversion obeys the Michaelis rate equation. The apparent Michaelis constants are of the same order of magnitude for lysine and glutamic acid plasminogens. The difference in conversion rates for the reactions has been shown to be connected with their having different catalytic constants. The data were analysed according to two reaction schemes, in one of which only one peptide bond is split during the glutamic acid plasminogen-plasmin conversion and in the other of which the cleavage of two peptide bonds with the obligatory formation of an intermediate plasminogen is assumed. The results favour the former.  相似文献   

18.
An NAD-dependent glycerol 3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD oxidoreductase; EC 1.1.1.8) has been purified from spinach leaves by a three-step procedure involving ion-exchange, gel filtration, and affinity chromatography. The enzyme has been purified over 10,000-fold to a specific activity of 38. It has a molecular weight of approximately 63,500. The pH optimum for the reduction of dihydroxyacetone phosphate is 6.8 and for glycerol 3-phosphate oxidation it is 9.5. During dihydroxyacetone phosphate reduction hyperbolic kinetics were observed when either NADH or dihydroxyacetone phosphate was the variable substrate, but concentrations of NADH greater than 150 μm were inhibitory. Michaelis constants were 0.30–0.35 mm for dihydroxyacetone phosphate and 0.01 mm for NADH. Glycerol 3-phosphate oxidation obeyed Michaelis-Menten kinetics with a Km of 0.19 mm for NAD and 1.6 mm for glycerol 3-phosphate. The enzyme was specific for those substrates, and dihydroxyacetone, glyceraldehyde, glyceraldehyde 3-phosphate, NADPH, NADP, and glycerol were not utilized. The spinach leaf enzyme appears to be in the cytoplasm and probably functions for the production of glycerol 3-phosphate from dihydroxyacetone phosphate.  相似文献   

19.
A specific sucrose phosphatase from plant tissues   总被引:6,自引:2,他引:4       下载免费PDF全文
1. A phosphatase that hydrolyses sucrose phosphate (phosphorylated at the 6-position of fructose) was isolated from sugar-cane stem and carrot roots. With partially purified preparations fructose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, glucose 1-phosphate and fructose 1,6-diphosphate are hydrolysed at between 0 and 2% of the rate for sucrose phosphate. 2. The activity of the enzyme is increased fourfold by the addition of Mg(2+) ions and inhibited by EDTA, fluoride, inorganic phosphate, pyrophosphate, Ca(2+) and Mn(2+) ions. Sucrose (50mm) reduces activity by 60%. 3. The enzyme exhibits maximum activity between pH6.4 and 6.7. The Michaelis constant for sucrose phosphate is between 0.13 and 0.17mm. 4. At least some of the specific phosphatase is associated with particles having the sedimentation properties of mitochondria. 5. A similar phosphatase appears to be present in several other plant species.  相似文献   

20.
A S Lewis  M D Glantz 《Biochemistry》1976,15(20):4451-4457
Bovine brain purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) was purified to homogeneity at a specific activity of 78 mumol min-1 mg of protein-1. A molecular weight of 78 000-80 000 was calculated for the native enzyme by fel filtration on Sephadex. Gel electrophoresis in the presence of sodium dodecyl sulfate indicated subunits of molecular weight of 38 000. Chemical and kinetic studies strongly implicated histidine and cysteine as catalytic groups at the active site of the enzyme. The pKa's determined for ionizable groups at the active site of the free enzyme were 5.8 and 8.2. Enzyme completely inactivated by p-chloromercuribenzoate was partially reactivated enzyme. A strong susceptibility to photooxidation in presence of methylene blue was observed. Photoinactivation was pH dependent, implicating histidine as the susceptible group at the active site. A rapid loss of catalytic activity upon incubation at 55 degrees C suggested heat lability. An activation energy of 9.6 kcal/mol was calculated. The nature of the catalytic mechanism of the enzyme was investigated, and initial velocity studies showed linear converging patterns of double-reciprocal plots of the data, consistent with a sequential catalytic mechanism. The product inhibition pattern was at variance with both the ordered Bi-Bi and random mechanisms. The observed competition between purine and nucleoside, and between inorganic orthophosphate and ribose 1-phosphate for this ordered mechanism, suggest a Theorell-Chance mechanism. Michaelis constants determined for substrates of the enzyme were 4.35 X 10(-5) M for guanosine, 3.00 X 10(-5) M for guanine, and 2.15 X 10(-2) M for inorganic orthophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号