首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Inorganic [(32)P]phosphate, [U-(14)C]glycerol and [2-(14)C]ethanolamine were injected into the lateral ventricles in the brains of adult rats, and the labelling of individual phospholipids was followed over 2-4 months in both a microsomal and a highly purified myelin fraction. 2. All the phospholipids in myelin became appreciably labelled, although initially the specific radioactivities of the microsomal phospholipids were somewhat higher. Eventually the specific radioactivities in microsomal and myelin phospholipids fell rapidly at a rate corresponding to the decline of radioactivity in the acid-soluble pools. 3. Equivalent experiments carried out in developing rats with [(32)P]phosphate administered at the start of myelination showed some persistence of phospholipid labelling in the myelin, but this could partly be attributed to the greater retention of (32)P in the acid-soluble phosphorus pool and recycling. 4. It is concluded that a substantial part of the phospholipid molecules in adult myelin membranes is readily exchangeable, although a small pool of slowly exchangeable material also exists. 5. A slow incorporation into or loss of labelled precursor from myelin phospholipids does not necessarily give a good indication of the rate of renewal of the molecules in the membrane. As presumably such labelled molecules originate by exchange with those in another membrane site (not necessarily where synthesis occurs) it is only possible to calculate the turnover rate in the myelin membrane if the behaviour of the specific radioactivity with time of the phospholipid molecules in the immediate precursor pool is known.  相似文献   

2.
Phospholipid exchange reactions within the liver cell   总被引:45,自引:32,他引:13  
1. Isolated rat liver mitochondria do not synthesize labelled phosphatidylcholine from CDP-[(14)C]choline or any phospholipid other than phosphatidic acid from [(32)P]phosphate. The minimal labelling of phosphatidylcholine and other phosphoglycerides can be attributed to microsomal contamination. However, when mitochondria and microsomes are incubated together with [(32)P]phosphate, the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine of the reisolated mitochondria become labelled, suggesting a transfer of phospholipids between the two fractions. 2. When liver microsomes or mitochondria containing labelled phosphatidylcholine are independently incubated with the opposite un-labelled fraction, there is a substantial and rapid exchange of the phospholipid between the two membranes. Exchange of phosphatidylinositol also occurs rapidly, whereas phosphatidylethanolamine and phosphatidic acid exchange only slowly. There is no corresponding transfer of marker enzymes. The transfer of phosphatidylcholine does not occur at 0 degrees , and there is no requirement for added substrate, ATP or Mg(2+), but the omission of a heat-labile supernatant fraction markedly decreases the exchange. 3. After intravenous injection of [(32)P]phosphate, short-period labelling experiments of the individual phospholipids of rat liver microsomes and mitochondria in vivo give no evidence for a similar exchange process. However, the incubation of isolated microsomes and mitochondria with [(32)P]phosphate also fails on reisolation of the fractions to demonstrate a precursor-product relationship between the individual phospholipids of the two membranes. 4. The intraperitoneal injection of [(32)P]phosphate results in a far greater proportion of the dose entering the liver than does intravenous administration. After intraperitoneal administration of [(32)P]phosphate the specific radioactivities of the individual phospholipids are in the order microsomes > outer mitochondrial membrane > inner mitochondrial membrane. 5. The incorporation of (32)P into cardiolipin is very slow both in vivo and in vitro. After labelling in vivo the radioactivity in the cardiolipin persists compared with that of the other phospholipids, whose specific radioactivities in the microsomes and mitochondrial fragments decay at a similar rate to that of the acid-soluble phosphate pool. 6. The possibility of phospholipid exchange processes occurring in the liver cell in vivo is discussed, and it is suggested that only a small but highly labelled part of the endoplasmic-reticulum lipoprotein pool is involved in the transfer.  相似文献   

3.
Rat platelets and their megakaryocyte precursors were examined for phospholipid composition. (1) The phospholipid composition of rat megakaryocytes, which were enriched and prepared from bone marrow cells, was almost identical to that of platelets. (2) The subclass composition of choline-containing glycerophospholipids (CGP) of rat megakaryocytes differed significantly from that of platelets: 1-alkenyl-2-acyl glycerophosphocholine (GPC) in megakaryocytes accounted for 29% of the total, whereas that in platelets was only 7%. (3) Rat platelets contained a larger amount of arachidonic acid than megakaryocytes, especially in ethanolamine-containing glycerophospholipids (EGP). (4) [32P]Phosphoric acid was significantly incorporated into megakaryocytes, whereas platelets showed little incorporation. On the other hand, the uptake of [3H]arachidonic acid into platelet phospholipids was about 15-times higher than that observed with megakaryocytes. (5) As reported previously for other blood cells, such as neutrophils and macrophages, the radioactivity of labeled arachidonic acid incorporated into CGP of platelets decreased, whereas that incorporated into EGP increased during a subsequent chase period. Hardly any such change was observed with megakaryocytes. These results suggest that the phospholipid composition of rat platelets is mainly determined at the time of thrombopoiesis, whereas the composition of molecular species is remodeled during circulation after thrombopoiesis.  相似文献   

4.
Effect of Ep on [14C]acetate incorporation into different lipid fractions of RBC membranes in starved and phenylhydrazine-treated rats was studied. The incorporation was increased into both neutral and phospholipid fractions on Ep treatment to starved or phenylhydrazine-treated rats. A slight decrease in the ratio of neutral lipid to phospholipid was observed under the influence of Ep in starved rats (23%) or in phenylhydrazine-treated rats (36%). Incorporation of radioactivities into different phospholipid fractions of RBC membrane increased on Ep treatment to starved rats, whereas, the relative percentages of these phospholipids (except LPC) remained more or less unchanged under similar conditions. Phenylhydrazine treatment increased the relative percentage of PC and concomitantly decreased the percentage of Sph. Percentage composition of both these two phospholipids showed a tendency to return to their normal levels on administration of Ep to phenylhydrazine-treated rats. Ep decreased the sigma saturated/sigma unsaturated ratio of fatty acids in PE, PS, and PC of RBC membrane in starved rats. On the other hand, no significant change was observed in this ratio of fatty acids in the phospholipids except Sph of RBC membrane in the presence of phenylhydrazine and Ep. In Sph, the ratio went down under similar conditions.  相似文献   

5.
The major phospholipids of rat ventral prostate have been separated and examined using thin-layer chromatography, gas chromatography and mass spectrometry. The main phospholipid classes were choline and ethanolamine glycerophospholipids, accounting for 77.9% of total lipid phosphorus. The prostate also contained small amounts of serine glycerophospholipids and sphingomyelin. The relative proportions of fatty acids in the different phospholipid classes were also determined. Arachidonic acid in prostatic phospholipids is contributed primarily by ethanolamine glycerophospholipids. This fraction contained 65-69 mol% plasmalogens, whereas choline and serine glycerophospholipid fractions contained less than 5 mol% plasmalogens. Ethanolamine, choline and serine plasmalogens contained mainly vinyl ethers of palmitic and stearic aldehydes. Ethanolamine plasmalogens also contained the vinyl ether of oleic aldehyde.  相似文献   

6.
1. Crude synaptosomal fractions (P2) from guinea-pig cerebral cortex were incubated in a Krebs-glucose medium containing labelled fatty acids and [3H]glucose. After the shortest incubation period (7.5 min) a high percentage (50-80%) of the total radioactive fatty acids was found in the P2 fractions. 2. After the incubation, the synaptosomal fractions were submitted to hypo-osmotic disruption and subsynaptosomal fractionation was carried out by using discontinuous-sucrose-gradient centrifugation. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were determined in fractions D (synaptic vesicles), E (microsomal preparation) and H (disrupted synaptosomes), as were the specific activities of a number of marker enzymes and the distribution of acetylcholine. 3. By using [14C]oleate, [14C]arachidonate, [3H]palmitate and [3H]glucose, the order to specific radioactivities in fraction D was found to be: phosphatidylinositol greater than phosphatidylcholine greater than phosphatidylserine greater than phosphatidylethanolamine. 4. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were always higher in fraction D than in fraction E. As fraction E had higher specific activities of several membrane marker enzymes, the enhanced labelling found in fraction D was considered to be localized in the synaptic vesicles. In this fraction, phosphatidylinositol made particularly large contributions to the total phospholipid labelling derived from [14C]arachidonate and [3H]glucose. 5. The similar labelling ratios of fatty acid/glucose in the phospholipids of fractions D and E, and the high specific radioactivities in the total phospholipid of the soluble fraction O, suggested intrasynaptosomal phospholipid transport.  相似文献   

7.
1. The incorporation of [(32)P]phosphate into phospholipids was measured in slices cut from the pial surface of guinea-pig cerebral cortex; incorporation into the phosphorus of some water-soluble precursors of phospholipid was measured under similar conditions. 2. Slices subjected to overall electrical stimulation at a frequency of 5pulses/sec. differed from control slices in their pattern of phospholipid labelling. After 1hr. of stimulation, incorporation of [(32)P]phosphate into phosphatidylcholine, ethanolamine phospholipid and cardiolipin was respectively 54, 55 and 58% of the control value, and that into phosphatidylinositol was 186% of control. Phosphatidic acid labelling tended to increase with electrical stimulation, but the statistical significance of this change was marginal. Labelling of phosphatidylglycerol and di- and tri-phosphoinositides was not affected significantly by electrical stimulation. 3. Electrical stimulation of the tissue altered the specific radioactivities of water-soluble precursors of phospholipid. 4. The turnover rates of the phosphate groups of phospholipids were estimated approximately from the specific radioactivities of phospholipids and their precursors. Phosphatidylinositol (and its lipid-soluble precursors) showed the largest change in turnover rate in response to electrical stimulation of the tissue; the turnover rates of other lipids were also affected. Changes in the specific radioactivity of phospholipids did not correspond to changes in turnover in these experiments.  相似文献   

8.
The metabolism of phospholipids in synchronous Plasmodium falciparum-infected erythrocytes was studied over one cycle of 48 h by the incorporation of labeled palmitate, serine, choline, and myo-inositol into cellular lipids. The rates of incorporation of palmitate and serine into total phospholipids and of choline into phosphatidylcholine (PC) were linear with the maturation of the parasite, increasing by a factor of 2–5.6 according to the precursors. The rate of inositol incorporation into phosphatidylinositol was 9.6 times higher at the schizont stage than at the ring stage, with a marked increase in the second half of the cycle. A significant incorporation of palmitate into triglycerides also occurred during the schizont stage of the parasite. The incorporations of serine and palmitate into phosphatidylethanolamine (PE) and PC showed a net increase at approximately the twentieth hour of the cycle, while the radioactivities recovered in phosphatidylserine (PS) had already reached a maximum by this time. These findings indicate an instantaneous transformation of PS into PE and PC through a decarboxylation of PS into PE, then a methylation of PE into PC during the second half of the cycle. Although PS is a minor component of the Plasmodium parasite, our findings demonstrate the important role of this phospholipid as a precursor of PE and PC, which are major constituents of parasite phospholipids.  相似文献   

9.
This paper reveals possible similarities in the thyrotropin-releasing hormone (TRH) effects on phospholipid metabolism in pituitary and retina of the rat central nervous system. Addition of the methylated analog (MeTRH) resulted in 171 +/- 16% and 88 +/- 10% increase in 32PO4 incorporation into phosphatidylinositol (PI) in pituitary (20 min incubation) and retina (60 min incubation), respectively. There was a similar significant increase in phosphatidic cid, but with no change in phosphatidylcholine or other classes of phospholipids. The effect was concentration-dependent and the ED50 also was close to KD, suggesting the response was regulated by MeTRH receptors in membranes of both pituitary and retina.  相似文献   

10.
Red blood cells were isolated from rat blood and incubated in the presence of [3H]arachidonate. A sizeable quantity (18%) of the radioactivity was incorporated into red cell lipids, of which phosphatidylcholine was the most highly labelled. Radioactive arachidonate was found at position 2 of this phospholipid. Free fatty acids were removed by washing the cells in solutions containing fatty-acid-free bovine serum albumin. The labelled red cells were then incubated for up to 16 h at 37 degrees C. After 16 h of incubation in saline-buffer-glucose or rat serum, 20 and 26%, respectively, of the total radioactivity was found in free fatty acids, and there were corresponding declines in the percentage radioactivities found in phosphatidylcholine. In the presence of serum, there was a more rapid release of radioactive fatty acid over the 2- to 16-h time course. There was not a significant drop in the phosphate levels of the total red cell phospholipids or phosphatidylcholine after 16 h of incubation and, as a result, there were large declines in the specific radioactivities of phosphatidylcholine. Diacylglycerols were not highly labelled and the action of phospholipase A2 on labelled phosphatidylcholine was indicated. When white blood cells were added to labelled red cells, there was little evidence of white cell involvement in the release of radioactive fatty acid, suggesting that the red cells themselves may be involved in arachidonate release. Red cells may serve as sources of arachidonate, released following hemorrhage in brain and metabolized to form various biologically active eicosanoids.  相似文献   

11.
High levels of ether phospholipids were found in rat platelets. Alkylacyl compounds constituted 18 and 29% of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE). Alkenylacyl compounds, not detected in GPC, represented 40% of GPE. Arachidonate comprised 60%, 42% and 26% of the acyl residues in the sn-2 position of alkenylacyl-GPE, alkylacyl-GPE and alkylacyl-GPC respectively. Based on all arachidonate being linked to the sn-2 position of the diacyl species, the arachidonate level was 47% in diacyl-GPE and 30% in diacyl-GPC. The incorporation and metabolic fate of arachidonate in various phospholipid classes of resting platelets was examined. Arachidonate was essentially recovered in the diacyl phospholipids and very poorly in alkylacyl- and alkenylacyl-GPE and GPC after 30 min incubation in the presence of [14C]arachidonic acid. Upon reincubation of the platelets after removal of free arachidonate, the radioactivity was gradually lost from diacyl-GPC. Concomitantly, the radioactivities in alkylacyl-GPC, alkylacyl-GPE, alkenylacyl-GPE and to a lower extent in diacyl-GPE were increased. Labelling of glycerophosphoinositol was not changed. This labelling transfer was linear up to 5-6 h, except for alkylacyl-GPC; then labelling remained constant. These data strongly suggest that free arachidonate incorporation through the Lands pathway occurs only for diacyl species and that arachidonate incorporation into the ether phospholipids is achieved by exchange from diacyl-GPC. Based on specific activities related to phosphorus content, the arachidonate incorporation rates into diacyl-GPE and diacyl-GPC were approximately equivalent. The very large differences between specific radioactivities related to arachidonate observed at the starting reincubation time were strongly attenuated when labelling equilibrium was reached. The turnover rate by this exchange pathway was higher in alkylacyl-GPC than in alkyl- and alkenylacyl-GPE. This finding agrees with the selectivity for arachidonate observed in the acylation of PAF-acether in human neutrophils [Chilton, O'Flaherty, Ellis, Swendsen & Wykle (1983) J. Biol. Chem. 258, 7268-7271].  相似文献   

12.
We previously reported that the biosynthesis of phospholipids in the avian retina is altered by light stimulation, increasing significantly in ganglion cells in light and in photoreceptor cells in dark. In the present work, we have determined that light significantly increases the incorporation of [3H]glycerol into retina ganglion cell glycerophospholipids in vivo by a Fos-dependent mechanism because an oligonucleotide antisense to c-fos mRNA substantially blocked the light-dark differences. We also studied in vitro the enzyme activities of phosphatidate phosphohydrolase (PAPase), lysophosphatidate acyl transferase (AT II), and phosphatidylserine synthase from retinas of chickens exposed to light or dark. Higher PAPase I and AT II activities were found in incubations of retinal ganglion cells from animals exposed to light; no increase was observed in preparations obtained from light-exposed animals treated with the c-fos antisense oligonucleotide. No light-dark differences were found in phosphatidylserine synthase activity. These findings support the idea that a coordinated photic regulation of PAPase I and AT II is taking place in retina ganglion cells. This constitutes a reasonable mechanism to obtain an overall increased synthesis of glycerophospholipids in stimulated cells that is mediated by the expression of Fos-like proteins.  相似文献   

13.
表皮生长因子对大鼠肺表面活性物质合成的调控及机制   总被引:4,自引:2,他引:2  
目的和方法:采用无血清成年大鼠肺组织培养,用液体闪烁计数器测定^3H-胆碱掺入磷脂酰胆碱量,消化定磷法测总磷脂,薄层层析及薄层扫描测磷脂各组分含量变化,观察生理浓度表皮生长因子对成年大鼠肺表面活性物质合成的调控。结果:①10^-9mol/L EGF作用8h后,PC合成量显著增加,16h达高峰;②EGF可显著增加总磷脂、PS特征性成分PC、PG合成(P〈0.01)。而细胞膜特征性组分PE、PSe、S  相似文献   

14.
Stimulation of the exocrine pancreas is associated with marked changes in pancreatic phospholipid metabolism. It has been previously established that de novo synthesis of phospholipids constitutes part of this "phospholipid effect". This study has demonstrated that in vitro stimulation of the rat pancreas utilising bethanecol and pancreozymin results in increased incorporation of labelled glucose into phosphatidyl inositol and, to a lesser extent, other phospholipids, suggesting increased de novo synthesis of these compounds. However, secretin which is believed to act via a different intracellular pathway, did not exert such an effect. The relevance of this animal model is indicated by the demonstration of increased incorporation of labelled glucose into phospholipids of human pancreas stimulated in vitro by bethanecol or sincalide (the active carboxy terminal octapeptide of pancreozymin).  相似文献   

15.
The phospholipid composition from various organs of the fresh water eel, such as gill, kidney, gut, liver and muscle, were determined by thin-layer chromatography. The major phosphatides found in these tissues were PC, PE and SPH and minor constituents PS, PI, DPG, AP and also LPC in the gut. A greater percentage of PS and SPH occurs in the osmoregulatory effector organs such as gill, kidney, and gut. From in vivo comparative kinetic studies of the 32P incorporation into the phospholipids, between 6 and 48 hours, certain remarkable features of phospholipid metabolism have been found in these tissues. A low uptake of inorganic 32P into the tissue lipid phosphorus was observed in the eel at 15 degrees C. The specific activity of the lipid phosphorus increased continuously in all tissues during 48 hours after 32P injection. During this experimental period, phosphatidic acid and phosphatidyl inositol fractions were labelled most rapidly in gill, kidney and gut, while the specific activity of the phosphatidyl choline fraction remained low in these organs. In liver, the rate of PC formation appears to be faster than the PI and PE biosynthesis. In gill and gut, the PE showed greater turnover than the PC as measured by 32P incorporation. In the eel, an euryhalin fish, the DPG of osmoregulatory effector organs has a high specific activity at all times. PS showed only a high specific activity in the gill. Labelling of SPH occured slowly in the various tissues only becoming evident after 24 hours. The results are compared with those published for other poikilotherm and homeotherm vertebrates. Relative differences between the turnover of various tissue phosphatides are discussed with of reference to the general scheme on phospholipid biosynthesis and to the physiological functions of the various organs.  相似文献   

16.
The influence of lindane upon the dynamic properties of plasma membranes from rat ventral prostate has been investigated using a fluorescence polarization technique. Preincubation with lindane decreased the fluorescence polarization in a dose dependent manner. This effect, which is associated with an increased membrane fluidity, occurred in a very short period of time.Lindane also provoked a number of changes in lipid biosynthesis from acetate in the membrane. Less [1-14C]acetate was incorporated into cholesterol and more into phospholipids when this liposoluble toxicant was added to the preincubation medium. However, not all phospholipid classes were equally increased, because while the rate of acetate incorporation was greater into choline glycerophospholipids than into ethanolamine glycerophospholipids, both were higher than the rates of acetate incorporation into serine glycerophospholipids and sphingomyelin.  相似文献   

17.
The aim of this study was to assess the phospholipid distribution of radioiodinated 17-iodoheptadecanoic acid (IHDA), 15-(p-iodophenyl)pentadecanoic acid (p-IPPA) and 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPPA) under normoxic conditions and to compare these data with the fatty acid composition of the phospholipid classes. After simultaneous i.v. injection of the radioiodinated fatty acids (1-123-IHDA; 1-131-p-IPPA; 1-125 DMIPPA) in open-chest dogs seven myocardial biopsies were taken over 40 min (n = 26). After lipid extraction of the biopsies the organic phase was analyzed for both neutral and polar lipids by two different TLC systems. The following polar lipid fractions were analyzed: lysophopshatidylcholine (LPC), sphingomyelin (SPH), phosphatidy1choline (PC; lecithin), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG; cardiolipin) and neutral lipids. Fractions were counted in a gamma well counter and corrected for cross-over and recovery. Results of the polar phospholipids analysis showed that IHDA has the highest incorporation into the phospholipids. The IHDA was mainly incorporated into PI (45.6%) followed by PC (30.9%), PE (14.0%) and PS (5.6%). The p-IPPA was predominantly incorporated incorporated into PC (37.2%), followed by PS (20.1%) and PE (13.7%). In contrast to IHDA, incorporation of p-IPPA into PI was small (6.4%). The DMIPPA analogue was incorporated into phopsholipids to only a very small degree, compared to IHDA and p-IPPA. PS (27.4%) was the only considerable phospholipid fraction into which DMIPPA was incorporated.The results clearly demonstrated that these radioiodinated fatty acid analogues have entirely different patterns of phospholipid incorporation. Major resemblances have been found between the incorporation into phospholipids of IHDA and the phospholipid distribution of the natural counterpart: stearic acid. The p—IPPA phospholipid incorporation only partly resembles the phospholipid distribution of palmitic acid. DMIPPA is because of its modified structure, incorporated into phospholipids to a low extent, mainly into PS. (Mol Cell Biochem116: 79–87, 1992)  相似文献   

18.
We have examined the preferential incorporation of specific fatty acids into phospholipid classes of cultured human umbilical vein endothelial cells. Pulse-labeling of human umbilical vein endothelial cell phospholipids with radiolabeled fatty acids and inhibition of radiolabeled fatty acid incorporation by competition with excess, unlabeled fatty acids in pair-wise combinations revealed two distinct classes of esterification systems into human umbilical vein endothelial cell phospholipids. The eicosanoid precursor fatty acids, including arachidonate, 8,11,14-eicosatrienoate (ETA) and 5,8,11,14,17-eicosapentaenoate (EPA), exhibited high affinity incorporation into total phospholipids, whereas other fatty acids, including docosahexaenoate and monohydroxy eicosatetraenoates, showed low affinity incorporation. The relative degree of incorporation of eicosanoid precursor fatty acids into phospholipid classes was phosphatidylcholine (PC) greater than phosphatidylethanolamine (PE) greater than phosphatidylinositol (PI) greater than phosphatidylserine (PS). The specific activity of [14C]arachidonic acid-labeled PI was two times higher than that of any other radiolabeled phospholipids. When competitive incorporation of eicosanoid precursor fatty acids into phospholipid classes was studied, they were found to be acylated into different phospholipid classes at different rates. Although eicosanoid precursor fatty acids were not preferentially incorporated into PC, arachidonic acid was preferentially incorporated into the other phospholipids and exhibited particular selectivity in comparison with the other eicosanoid precursor fatty acids for incorporation into PI. These results demonstrate that human umbilical vein endothelial cells possess selective incorporation mechanisms for specific fatty acids into various phospholipids via the deacylation-reacylation pathway.  相似文献   

19.
Rat ventral prostate incorporated (1-14C)acetate, (1-14C)palmitate and (1-14C)linoleate into different phospholipids in a time-dependent process. The rate of incorporation into total phospholipids was higher with linoleate (10.0 nmol/g) than with either palmitate (5.8 nmol/g) or acetate (4.7 nmol/g). Predominant labelling with all the radioactive substrates assayed was found in choline glycerophospholipids (PC). The radioactive profiles for linoleate in the other ventral prostate phospholipids differed from those obtained with palmitate and acetate. Specifically linoleate was incorporated into inositol glycerophospholipids plus lysoethanolamine glycerophospholipids (PI+LPE) and not into sphingomyelin (SM), while palmitate and acetate incorporated into SM but not into PI+LPE. Acetate showed the highest oxidation to CO2 whereas no differences were observed in the radioactivity incorporated into CO2 from a saturated (palmitate) or an essential unsaturated fatty acid (linoleate). These studies also show zinc-dependence by the acetate to CO2 oxidation.Abbreviations PL total phospholipids - PC choline glycerophospholipids - PE ethanolamine glycerophospholipids - PI+LPE inositol glycerophospholipids plus lysoethanolamine glycerophospholipids - PS serine glycerophospholipids - SM sphingomyelin  相似文献   

20.
The main phospholipids in rat peritoneal surface layer were analyzed by normal-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) ion-trap mass spectrometry (MS). By using a silica gel column and a gradient of hexane/isopropanol/water as mobile phase containing 5 mmol/L ammonium formate as modifiers, a baseline separation of glycerophosphoehtanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC), sphingomyelin (SM) and lyso-phosphatidylcholine (LPC) was obtained and more than 90 phospholipid constituents in rat peritoneal surface were identified and determined by on-line ion-trap MS detection. The major ethanolamine glycerophospholipids in rat peritoneal surfaces were plasmalogens that were highly enriched in polyunsaturated fatty acids at the sn-2 position. In addition, the fragmentation patterns for each phospholipid class by the ion-trap MS were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号