首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ganglioside composition of bovine peripheral lymphocytes was shown to change sharply under lymphoid leukemia. In normal lymph, lymph nodes, spleen and blood lymphocytes the major ganglioside is N-glycolylhematoside, whereas in calf thymus lymphocytes appreciable amounts of more polar components (GM1- and GD1a-like gangliosides) were found. In leukemic lymphocytes isolated from the same tissues the hematoside content is decreased, while the amount of more polar gangliosides is increased. Possible causes of the altered ganglioside pattern in leukemic lymphocytes are discussed.  相似文献   

2.
The gangliosides expressed by normal melanocytes are predominantly GM3 (greater than 90%) and GD3 (less than 5%). Malignant melanoma can express several other types of gangliosides in significant quantities, including GM2 and GD2. Melanoma patients can develop an immune response against some of these ganglioside antigens on autologous melanoma cells. The four major gangliosides expressed by human melanoma cells (GM3, GD3, GM2, and GD2) were examined for their immunomodulatory effect on lymph node lymphocytes from melanoma patients. Gangliosides were added exogenously to lymphocytes grown in the presence of IL-2. Preferential interactions of specific melanoma gangliosides on IL-2 stimulation were found. While GM2 and GD2 enhanced the lymphocyte response to IL-2, GM3 and GD3 significantly inhibited this response. GM2 and GD2 differ from GM3 and GD3 by the presence of a terminal N-acetylgalactosamine. Since different gangliosides can up-regulate and down-regulate lymphocyte responses to IL-2, the ganglioside phenotype of melanoma cells may play a major role in determining whether an individual tumor causes immune stimulation or suppression.  相似文献   

3.
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.  相似文献   

4.
Abstract— The ganglioside composition of the brain of a patient with Tay-Sachs disease (TS-brain) was determined by a newly developed ganglioside-mapping procedure and compared with that of an age-matched control brain. GM2 ganglioside was the predominant component in TS-brain and the following gangliosides were also found, GM1, GD1a, GD1b and GT1 (major gangliosides in normal brain), and GM3, GD3, GD2 and GD1a-GAN (minor or undetectable components of normal brain). Individual gangliosides were isolated by column chromatography using a combination of DEAE-Sepharose, Iatrobeads and Silica Gel 60 and their structures were confirmed by comparing them with authentic standards using TLC, analysing their carbohydrate compositions by gas-liquid chromatography and cleaving them sequentially with glycosidases. The amounts of individual components were measured by quantitative densitometric scanning of the thin-layer plates. As a reflection of myelin breakdown, no sialosylgalactosyl ceramide was detectable in TS-brain. Although the total amounts of all gangliosides except GM2 in TS-brain were low, there were normal molar ratios of the main gangliosides in normal brain, that is, GM1, GD1a, GD1b and GT1. In comparison with the amount of GDla ganglioside, the amounts of GM2, GD2 and GD1a-GAN, which contain N-acetylgalactosamine as a terminal carbohydrate residue, were all elevated in TS-brain. The long chain bases of individual gangliosides contained both C-18 and C-20 sphingosine in different ratios and the ratio of C-20 to C-18 increased in the gangliosides in the order: GM2 < GM1 < GD1a < GD1a-GAN < GD1b < GT1 in both normal brain and TS-brain. In contrast, GD2 and GD3 gangliosides consisted mainly of C-18 sphingosine. The C-20 to C-18 ratios of individual gangliosides in the TS-brain were lower than those of age-matched control brain. Hexosaminidase from Turbo cornutus showed the same specific activity and Km value in catalysing the cleavage of terminal N-acetylgalactosaminyl residues from GM2, GD2 and GD1a-GAN, suggesting that the brain gangliosides that increase in Tay-Sachs disease may be cleaved by the same enzyme.  相似文献   

5.
We analyzed glycosphingolipids from normal lymph node cells of seven cattle and lymph node cells of eight cattle with enzootic bovine leukosis. The neutral glycosphingolipids and gangliosides were analyzed by thin-layer chromatography. Both normal and tumorous lymph node cells had GlcCer, LacCer, and GbOse3Cer as major neutral glycosphingolipids. In the ganglioside fraction, GM3 was the predominant component in both normal and tumorous lymph node cells, and another component, ganglioside Gx fraction, was also prominent in tumorous lymph node cells. The structure of this ganglioside Gx fraction was elucidated by thin-layer chromatography, sugar analysis, neuraminidase digestion, and permethylation studies. This ganglioside Gx fraction was found to be a mixture of four ganglioside species. The structures of individual gangliosides Gx (1 to 4) were characterized as follows. 1: GD3, NeuAc alpha 2-8NeuAc alpha 2-3Gal1-4Glc-Cer. 2: GD3, NeuAc alpha 2-8NeuGc alpha 2-3Gal1-4Glc-Cer. 3: GD3, NeuGc alpha 2-8NeuAc alpha 2-3Gal1-Glc-Cer. 4: GD3, NeuGc alpha 2-8NeuGc alpha 2-3Gal1-4Glc-Cer. These GD3 species may be formed as a result of the induced synthesis inassociation with malignant transformation.  相似文献   

6.
Concentration of gangliotriaose-series glycosphingolipids, including GA2, GM2, GD2 and GT2, was measured in human sera by a thin-layer chromatography/enzyme-immunostaining method. By this method, as little as 5-10 ng/ml of these glycolipids in serum could be determined simultaneously. Although GD2 ganglioside could be consistently detected in normal cord blood (1-2 ng/ml of serum), the ganglioside was never detected in normal adult serum. However, the same ganglioside was found to be present in large quantity in preoperative sera of 6/9 patients with neuroblastomas (25-658 ng/ml of serum). In addition to GD2, gangliosides GM2 and GA2 increased concomitantly than usual. It is concluded that this highly sensitive quantification of the tumor-associated glycolipids circulating in serum of neuroblastoma patients could be useful in their diagnosis.  相似文献   

7.
The total content and pattern of gangliosides were determined in the unfractionated sera of 11 healthy human adults and in isolated lipoproteins. The total content of lipid-bound sialic acid was 10.5 +/- 3.2 nmol/ml serum. The ganglioside profile consisted of more than ten different components. The major ganglioside was GM3, followed by GD3, GD1a, GM2, GT1b, MG-3 (sialosyllactoneotetraosylceramide), GD1b and GQ1b. Traces of four additional gangliosides could not be quantified reliably. Ganglioside patterns did not vary in sera taken from healthy adults of different age and sex. Approximately 98% of human serum gangliosides were transported by serum lipoproteins, predominantly by LDL (66%), followed by HDL (25%) and VLDL (7%). The quantitative distribution of individual gangliosides in VLDL and LDL was almost the same as that in the unfractionated serum; some differences existed with the ganglioside profile in HDL.  相似文献   

8.
The gangliosides GM1 and GD1b have recently been reported to be potential target antigens in human motor neuron disease (MND) or motor neuropathy. The mechanism for selective motoneuron and motor nerve impairment by the antibodies directed against these gangliosides, however, is not fully understood. We recently investigated the ganglioside composition of isolated bovine spinal motoneurons and found that the ganglioside pattern of the isolated motoneurons was extremely complex. GM1, GD1a, GD1b, and GT1b, which are major ganglioside components of CNS tissues, were only minor species in motoneurons. Among the various ganglioside species in motoneurons, several were immunoreactive to sera from patients with MND and motor neuropathy. One of these gangliosides was purified from bovine spinal cord and characterized as N-glycolylneuraminic acid-containing GM1 [GM1(NeuGc)] by compositional analysis, fast atom bombardment mass spectra, and the use of specific antibodies. Among seven sera with anti-GM1 antibody activities, five sera reacted with GM1(NeuGc) and two did not. Two other gangliosides, which were recognized by another patient's serum, appeared to be specific for motoneurons. We conclude that motoneurons contained, in addition to the known ganglioside antigens GM1 and GD1b, other specific ganglioside antigens that could be recognized by sera from patients with MND and motor neuropathy.  相似文献   

9.
Several GM3 derivatives have been synthesized. Among them were lyso-GM3 derivatives and GM3 analogues with modifications in the sialic acid moiety. They were used as glycolipid acceptors in assays for GM2 and GD3 synthase of rat liver Golgi. Analysis of the resulting enzyme activities and of the reaction products revealed different substrate specificities for GM2 and GD3 synthase although the normal glycolipid acceptor for both transferases is ganglioside GM3. Specificity of GD3 synthase is strongly determined by the substrate's negative charge and the acyl residue in amide bond to the amino group of neuraminic acid, while GM2 synthase reacts quite indifferently to these changes in the sialic moiety of the substrate. Both enzymes seem to be sensitive to the spatial extension at the neuraminic acid's carboxylic group.  相似文献   

10.
Specific immune damage to liposomes containing Forssman or globoside glycolipid was inhibited when the liposomes also contained ganglioside. The activity of a human monoclonal Waldenstr?m macroglobulin antibody to Forssman glycolipid was inhibited by each of three gangliosides tested, GM3, GD1a and GD1b. Inhibition of the monoclonal antibody was dependent on the amount of ganglioside in the liposomes, and was diminished by reducing the relative amount of ganglioside. Inhibition also correlated positively with the number of ganglioside sialic acid groups, with inhibition by GT1b greater than GD1a greater than GM3. Naturally occurring human antibodies to globoside glycolipid were detected in 18% (9 out of 50) of normal human sera tested. Immune damage to liposomes induced by each of the three highest-reacting human anti-globoside sera was blocked by liposomal GM3. We conclude that gangliosides can strongly influence immune damage to membranes induced by antibody interactions with adjacent neutral glycolipids.  相似文献   

11.
Two major gangliosides from pig spleen lymphocytes, accounting for 57% of the total lipid-bound sialic acids, were isolated and purified to homogeneity by column chromatography on DEAE-Sephadex and silica gel. They were identified as GM3 (II3Neu5GcLacCer), and GD3 (II3(Neu5Gc)2LacCer), by thin-layer chromatography in comparison with standards and by analysis of the constituent sugars. The major fatty acids of these gangliosides were stearic acid and myristic acid, respectively. In addition to these gangliosides, GD2 and bands comigrating on thin-layer chromatography with authentic GM2, GM1, GD1a and GD1b were found. These compounds also occur in pig peripheral blood lymphocytes, where, however, GD3 represents about 70% of the total lipid-bound sialic acid.  相似文献   

12.
Composition of gangliosides from ovine testis and spermatozoa   总被引:1,自引:0,他引:1  
Gangliosides were extracted and purified from ovine testis and ejaculated spermatozoa which contained, respectively, 57 and 9 nmol lipid-bound sialic acid per gram wet weight. Fourteen gangliosides were resolved by thin-layer chromatography of testicular gangliosides, of which eleven were purified in sufficient quantity to enable a complete compositional analysis of the carbohydrate residues to be performed. None of the gangliosides contained fucose, but several contained N-glycolylneuraminic acid as a component of the sialic acid species. Relative migration on thin-layer chromatograms relative to known standards, compositional analysis, and selective degradation by specific enzymes were used as the basis for identification. Testis contained members of the ganglio series (GM1, GD1a, GD1b, GT1b, GQ1b), hematoside series (GM3, GD3), and sialosylparagloboside in the molar ratio of 54:40:6, respectively. Testicular GM3, GM1, GD3, GD1a, GD1b and GT1b ran as double bands on thin-layer chromatography which could be accounted for by observed differences in the fatty acid moiety. In addition, the slower migrating band of each pair contained some or all of its sialic acid residues as N-glycolylneuraminic acid, whereas the faster migrating band contained exclusively N-acetylneuraminic acid, except for GM3 where N-acetylneuraminic acid was the sole species in both bands. Thin-layer chromatography of sperm gangliosides revealed seven bands comigrating with equivalent testicular gangliosides. These coincided with the slower migrating bands of testicular GM3, GM1, GD3, GD1a, both bands of GD1b, and possibly both bands of GT1b. Sperm contained only trace amounts of sialosylparagloboside but, in addition, two unidentified bands which were absent from testis were also observed. The molar ratio of the ganglio series to the hematoside series in sperm was 42:58 with GM3 accounting for 42% of total gangliosides.  相似文献   

13.
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.  相似文献   

14.
It is known that gangliosides, being ubiquitous membrane components, play important roles in cell-cell recognition, differentiation and transmembrane signalling. GM3, GM1 and GD1a were detected in the rat oviduct as major gangliosides by thin-layer chromatography (TLC) analysis. The total amounts of gangliosides from the oviducts at various times after hormone injection were not much changed. In order to identify their distribution and possible changes during ovulation, frozen sections of the rat oviducts were stained with specific monoclonal antibodies (MAbs) against the ganglio-series gangliosides. GM3 and GM1 were expressed in a different manner, but GD1a and other gangliosides were not immunohistochemically detected. In the ampullar region, GM3 was expressed in all the stroma and epithelial cells, but not GM1. GM1 was also not observed in epithelial cells. Staining by anti-GM1 monoclonal antibodies revealed long and minute thread-like structures in some of the stroma cells, whereas anti-GM3 monoclonal antibodies stained the entire cytoplasm, but not the nucleus, of all the stroma and epithelial cells. Other ganglio-series gangliosides, including GD1a, were not detected to some extent in the ampullar region by immunohistochemistry. Thus, these data suggest that GM3 and GM1 are oviduct-specific gangliosides.  相似文献   

15.
Gangliosides are ubiquitous membrane components in mammaliancells and are suggested to play important roles in various cellfunctions, such as cell-cell recognition, differentiation andtransmembrane signalling. Rat ovary contained GM3, GD3 and GD1aas major gangliosides, and GM1 as a minor one. In order to studytheir distribution in the rat ovary and its possible changesduring the oestrous cycle, frozen sections were stained withspecific monoclonal antibodies against 11 ganglio-series gangliosidesincluding those mentioned above. GM3, GM1 and GD1a were expressedin a spatiotemporally different manner during the oestrous cycle,but GD3 and other gangliosides were not immunohistochemicallydetected. In primary and secondary follicles, GM3, GM1 and GDlawere expressed in theca cells, but not in granulosa cells. Theoocyte in primary, but not secondary, follicles was positiveto the anti-GD1a antibody. In Graafian follicles, GM1 and GD1awere similarly expressed as in secondary follicles, however,the expression of GM3 spread gradually from theca cells to granulosacells. In early Graafian follicles, only GM3 was expressed toa detectable extent from the outer part of the granulosa layerto the inner part Shortly before ovulation, all granulosa cellsand cumulus cells became positive to anti-GM3 antibody. Afterovulation, differential distribution of GM3, GM1 and GD1a wasalso observed in luteal cells. GD1a was localized in thread-likestructures, while GM3 was distributed throughout the cytoplasm,but not in the nucleus. GM1 was localized only in the plasmamembrane and/or its close vicinity. Other ganglio-series gangliosides,including GD3, were not detected to an appreciable extent inthe ovaries by immunohistochemistry ganglioside oestrous cycle rat ovary  相似文献   

16.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

17.
Gangliosides are ubiquitous membrane-associated glycosphingolipids, which are involved in cell growth and differentiation. Most tumor cells synthesize and shed large amounts of gangliosides into their microenvironment, and many studies have unraveled their immunosuppressive properties. In the present study we analyzed the effects of GM3 and GD3 gangliosides, purified from human melanoma tumors, on the differentiation of monocyte-derived dendritic cells (MoDC). At concentrations close to those detected in the sera from melanoma patients, both gangliosides dose-dependently inhibit the phenotypic and functional differentiation of MoDC, as assessed by a strong down-regulation of CD1a, CD54, CD80, and CD40 Ags and impaired allostimulatory function on day 6 of culture. Furthermore, GM3 and GD3 gangliosides decreased the viable cell yield and induced significant DC apoptosis. Finally, addition of GD3 to differentiating DC impaired their subsequent maturation induced by CD154. The resulting DC produced low amounts of IL-12 and large amounts of IL-10, a cytokine pattern that might hamper an efficient antitumor immune response. In conclusion, the results demonstrate that gangliosides impair the phenotypic and functional differentiation of MoDC and induce their apoptosis, which may be an additional mechanism of human melanoma escape.  相似文献   

18.
Prior development of a unique androgen-receptor (AR)-negative cell line (HH870) from organ-confined (T2b) human prostate cancer (CaP) enabled comparison of the gangliosides associated with normal and neoplastic prostate epithelial cells, organ-confined versus metastatic (DU 145, PC-3), and AR-negative versus AR-positive CaP cell lines. Resorcinol-HCl and specific monoclonal antibodies were used to characterize gangliosides on 2D-chromatograms, and to visualize them on the cell surface with confocal-fluorescence microscopy. AR-negative cells expressed GM1b, GM2, GD2, GD1a, and GM3. GM1a, GD1b, and GT1b were undetectable. GM1b and GD1a were more prominent in AR-negative than in AR-positive cells. PC-3 and HH870 cells were unique in the expression of O-acetylGD2 (O-AcGD2) and two alpha2,3-sialidase-resistant, alkali-susceptible GMR17-reactive gangliosides. Expression of GD1a, GM1b, doublets of GD3, GD2, and O-AcGD2, and the presence of an additional alkali-labile-14.G2a-reactive ganglioside, two alkali-susceptible, and three alkali-resistant GMR17-reactive gangliosides makes HH870 a potential component of a polyvalent-vaccine for active-specific immunotherapy of CaP.  相似文献   

19.
Ganglioside GM2, 3H-labeled in the sphingoid base, was added to the culture medium of normal and GM2 gangliosidosis fibroblasts. Ganglioside was found to adsorb rapidly to the cell surface, most of it could however be removed by trypsination. The trypsin-resistant incorporation was about 10 nmol/mg cell protein, after 48 h. The rates of adsorption and incorporation depended strongly on the concentration of fetal calf serum in the medium, higher serum concentrations being inhibitory. After various incubation times, the lipids were extracted, separated by thin-layer chromatography and visualized by fluorography. In normal cells a variety of degradation products as well as sphingomyelin was found whereas in GM2 gangliosidosis cells, only trace amounts of such products (mainly GA2) were found. In contrast, the higher gangliosides GM1 and GD1a were formed in comparable amounts (2.2-3.6% of total radioactivity after 92 h) in normal and pathologic cell lines. Supplementation of cells from GM2 gangliosidosis, variant AB, with purified GM2-activator protein restored ganglioside GM2 degradation to almost normal rates but had no effect on its glycosylation to gangliosides GM1 and GD1a. From these results we conclude that the synthesis of higher gangliosides from incorporated GM2 can occur by direct glycosylation and not only via lysosomal degradation and resynthesis from [3H]sphinganine-containing degradation products. Preliminary studies with subcellular fractionation after various times of [3H]ganglioside incorporation indicated biphasic kinetics for the net transport of membrane-inserted ganglioside to lysosomes, compatible with the notion that a portion of the glycolipids can also escape from secondary lysosomes and migrate to Golgi compartment or cell surface.  相似文献   

20.
Adults rats with hypothyroidism were prepared by administration of 6-propyl-2-thiouracil (PTU) or methimazole, and the tissues were examined for their gangliosides through methods including glycolipid-overlay techniques. Normal thyroid tissue contained GM3, GD3, and GD1a as the major gangliosides, with GM1, GD1b, GT1b, and GQ1b in lesser amounts. The goitrous tissue of PTU-induced hypothyroid rats had higher concentrations of GM1 and GD1a with a concomitant decrease of GM3. The amount of GT3 in thyroid tissue was increased in hypothyroid animals. While normal liver tissue had a complex ganglioside pattern with a- and b-series gangliosides, the PTU-induced hypothyroid tissue showed a simpler ganglioside profile that consisted mainly of a-series gangliosides with almost undetectable amounts of b-series gangliosides. The expression of c-series gangliosides was suppressed in the hypothyroid liver tissue. Heart tissue had higher contents of GM3 and GT3 than control. No apparent change was observed in the compositions of major and c-series gangliosides in other extraneural tissues (i.e., kidney, lung, spleen, thymus, pancreas, testis, skeletal muscle, and eye lenses), and neural tissues (i.e., cerebrum and cerebellum) from PTU-induced hypothyroid rats. The ganglioside changes of thyroid, liver, and heart tissues were reproduced in corresponding tissues of methimazole-induced hypothyroid rats. These results suggest that hypothyroid conditions affect the biosynthesis and expression of gangliosides in specific tissue and cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号