首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since redox active metals are often transported across membranes into cells in the reduced state, we have investigated whether exogenous ferri-heme or heme bound to hemopexin (HPX), which delivers heme to cells via receptor-mediated endocytosis, interact with a cell growth-associated plasma membrane electron transport (PMET) pathway. PMET reduces the cell-impermeable tetrazolium salt, WST-1, in the presence of the mandatory low potential intermediate electron acceptor, mPMS. In human promyelocytic (HL60) cells, protoheme (iron protoporphyrin IX; 2,4-vinyl), mesoheme (2,4-ethyl) and deuteroheme (2,4-H) inhibited reduction of WST-1/mPMS in a saturable manner supporting interaction with a finite number of high affinity acceptor sites (Kd 221 nM for naturally occurring protoheme). A requirement for the redox-active iron was shown using gallium-protoporphyrin IX (PPIX) and tin-PPIX. Heme-hemopexin, but not apo-hemopexin, also inhibited WST-1 reduction, and copper was required. Importantly, since neither heme nor heme-hemopexin replace mPMS as an intermediate electron acceptor and since inhibition of WST-1/mPMS reduction requires living cells, the experimental evidence supports the view that heme and heme-hemopexin interact with electrons from PMET. We therefore propose that heme and heme-hemopexin are natural substrates for this growth-associated electron transfer across the plasma membrane.  相似文献   

2.
Most investigations into plasma membrane electron transport (PMET) in Saccharomyces cerevisiae have focused on the inducible ferric reductase responsible for iron uptake under iron/copper-limiting conditions. In this paper, we describe a PMET system, distinct from ferric reductase, which reduces the cell-impermeable water-soluble tetrazolium dye, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium monosodium salt (WST-1), under normal iron/copper conditions. WST-1/1-methoxy-phenazine methosulphate reduction was unaffected by anoxia and relatively insensitive to diphenyleneiodonium. Dye reduction was increased when intracellular NADH levels were high, which, in S. cerevisiae , required deletion of numerous genes associated with NADH recycling. Genome-wide screening of all viable nuclear gene-deletion mutants of S. cerevisiae revealed that, although mitochondrial electron transport per se was not required, the presence of several nuclear and mitochondrially encoded subunits of respiratory complexes III and IV was mandatory for PMET. This suggests some form of interaction between components of mitochondrial and plasma membrane electron transport. In support of this, mitochondrial tubular networks in S. cerevisiae were shown to be located in close proximity to the plasma membrane using confocal microscopy.  相似文献   

3.
2,3-Dimethoxy 1,4-naphthoquinone (DMNQ), which redox cycles via two-electron reduction, mediates reduction of the cell-impermeative tetrazolium dye WST-1 in kidney epithelial cells (MDCK), which express high levels of NQO1, but not in HL60 or CHO cells, which are NQO1 deficient. DMNQ-dependent WST-1 reduction by MDCK cells was strongly inhibited by low concentrations of the NQO1 inhibitor dicoumarol and was also inhibited by diphenyleneiodonium, capsaicin, and superoxide dismutase (SOD), but not by the uncoupler FCCP or the complex IV inhibitor cyanide. This suggests that DMNQ-dependent WST-1 reduction by MDCK cells is catalyzed by NQO1 via redox cycling and plasma membrane electron transport (PMET). Interestingly, we observed an association between DMNQ/WST-1 reduction and extracellular H2O2 production as determined by Amplex red. Exposure of MDCK cells to DMNQ for 48 h caused cellular toxicity that was extensively reversed by co-incubation with dicoumarol or exogenous SOD, catalase, or N-acetylcysteine. No effects were observed in NQO1-deficient CHO and HL60 cells. In conclusion, we have developed a simple real-time cellular assay for NQO1 and show that PMET plays a significant role in DMNQ redox cycling via NQO1, leading to cellular toxicity in cells with high NQO1 levels.  相似文献   

4.
Oxidized-1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) has been demonstrated to accumulate in atherosclerotic lesions and regulates expression of more than 1,000 genes in human aortic endothelial cell (HAEC). Among the most highly induced is heme oxygenase-1 (HO-1), a cell-protective antioxidant enzyme, which is sensitively induced by oxidative stress. To identify the pathway by which Ox-PAPC induces HO-1, we focused on the plasma membrane electron transport (PMET) complex, which contains ecto-NADH oxidase 1 (eNOX1) and NADPH:quinone oxidoreductase 1 (NQO1) and affects cellular redox status by regulating levels of NAD(P)H. We demonstrated that Ox-PAPC and its active components stimulated electron transfer through the PMET complex in HAECs from inside to outside [as determined by extracellular 2-(4-iodophenyl)-3-(44-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) reduction] and from outside to inside of the cell (as determined by intracellular NBT reduction). Chemical inhibitors of PMET system and siRNAs to PMET components (NQO1 and eNOX1) significantly decreased HO-1 induction by Ox-PAPC. We present evidence that Ox-PAPC activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in HAEC plays an important role in the induction of HO-1 and PMET inhibitors blocked Nrf2 activation by Ox-PAPC. We hypothesized that PMET activation by Ox-PAPC causes intracellular NAD(P)H depletion, which leads to the increased oxidative stress and HO-1 induction. Supporting this hypothesis, cotreatment of cells with exogenous NAD(P)H and Ox-PAPC significantly decreased oxidative stress and HO-1 induction by Ox-PAPC. Taken together, we demonstrated that the PMET system in HAEC plays an important role in the regulation of cellular redox status and HO-1 expression by Ox-PAPC.  相似文献   

5.
Abstract

Trans-plasma membrane electron transport (tPMET) in mammalian cells has been demonstrated using artificial cell-impermeable dyes, but the extent to which reduction of these dyes involves distinct pathways remains unclear. Here we compare the properties of three commonly used dyes, WST-1, FeCN and DCIP. The presence of an intermediate electron carrier (mPMS or CoQ1) was obligatory for WST-1 reduction, whereas FeCN and DCIP were reduced directly. FeCN reduction was, however, greatly enhanced by CoQ1, whereas DCIP was unaffected. Superoxide dismutase (SOD) and aminooxyacetate (AOA), a malate/aspartate shuttle inhibitor, strongly inhibited WST-1 reduction and reduced DCIP reduction by 40–60%, but failed to affect FeCN reduction, indicating involvement of mitochondrial TCA cycle-derived NADH and a possible role for superoxide in WST-1 but not FeCN reduction. Reduction of all three substrates was similarly inhibited by dicoumarol, diphenyleneiodonium and capsaicin. These results demonstrate that WST-1 FeCN and DCIP are reduced by distinct tPMET pathways.  相似文献   

6.
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.  相似文献   

7.
The existence of the blood-retinal barrier means that proteins that protect the retina from damage by reactive oxygen species must either be made locally or specifically transported across the barrier cells; however, such transepithelial transport does not seem to occur. Among the circulatory proteins that protect against iron-catalyzed production of free radicals are apo-transferrin, which binds ferric iron and has previously been shown to be made by cells of the neural retina (Davis and Hunt, 1993, J. Cell Physiol., 156:280–285), and the extracellular antioxidant, apo-hemopexin, which binds free heme (iron-protoporphyrin IX). Since hemorrhage and heme release can be important contributing factors in retinal disease, evidence of a hemopexin-based retinal protection system was sought. The human retina has been shown to contain apo-hemopexin which is probably synthesized locally since its mRNA can be detected in retinal tissue dissected from human donor eyes. It is likely that the retina contains a mechanism for the degradation of hemopexin-bound heme since the blood-retinal barrier also precludes the exit of heme-hemopexin from the retina. Retinal pigment epithelial cells have been found to bind and internalize heme-hemopexin in a temperature-dependent, saturable, and specific manner, analogous to the receptor-mediated endocytic system of hepatoma cells. Moreover, the binding of heme-hemopexin to the cells stimulates the expression of heme oxygenase-1, metallothionein-1, and ferritin. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Trans-plasma membrane electron transport (tPMET) in mammalian cells has been demonstrated using artificial cell-impermeable dyes, but the extent to which reduction of these dyes involves distinct pathways remains unclear. Here we compare the properties of three commonly used dyes, WST-1, FeCN and DCIP. The presence of an intermediate electron carrier (mPMS or CoQ(1)) was obligatory for WST-1 reduction, whereas FeCN and DCIP were reduced directly. FeCN reduction was, however, greatly enhanced by CoQ(1), whereas DCIP was unaffected. Superoxide dismutase (SOD) and aminooxyacetate (AOA), a malate/aspartate shuttle inhibitor, strongly inhibited WST-1 reduction and reduced DCIP reduction by 40-60%, but failed to affect FeCN reduction, indicating involvement of mitochondrial TCA cycle-derived NADH and a possible role for superoxide in WST-1 but not FeCN reduction. Reduction of all three substrates was similarly inhibited by dicoumarol, diphenyleneiodonium and capsaicin. These results demonstrate that WST-1 FeCN and DCIP are reduced by distinct tPMET pathways.  相似文献   

9.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

10.
Porphyromonas gingivalis acquires heme through an outer-membrane heme transporter HmuR and heme-binding hemophore-like lipoprotein HmuY. Here, we compare binding of iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) to HmuY with that of iron(III) protoporphyrin IX (protoheme) and protoporphyrin IX (PPIX) using spectroscopic methods. In contrast to PPIX, mesoheme and deuteroheme enter the HmuY heme cavity and are coordinated by His134 and His166 residues in a fully analogous way to protoheme binding. However, in the case of deuteroheme two forms of HmuY–iron porphyrin complex were observed differing by a 180° rotation of porphyrin about the α-γ-meso-carbon axis. Since the use of porphyrins either as active photosensitizers or in combination with antibiotics may have therapeutic value for controlling bacterial growth in vivo, it is important to compare the binding of heme derivatives to HmuY.  相似文献   

11.
Summary Plasma membrane NADH-oxidase of mammalian cells is usually assayed biochemically in isolated plasma membranes by measuring its ability to oxidise NADH or to reduce oxygen to water. Lack of a convenient cellular assay has greatly limited the study of NADH-oxidase, the physiological significance of which remains uncertain. Recently, we demonstrated that the novel cell-impermeative sulfonated tetrazolium salt WST-1 (2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium, monosodium salt), used in conjunction with an intermediate electron acceptor, was reduced extracellularly suggesting involvement of a component of the trans-plasma membrane electron transport system in WST-1 reduction. In this study we provide evidence that WST-1 is reduced at the external surface of the plasma membrane by an NADH-oxidase, and that reduction is primarily mediated by superoxide. Thus, WST-1 reduction was extensively inhibited by superoxide dismutase and by the potent NADH-oxidase inhibitor resiniferatoxin. Dihydrocapsaicin and capsaicin which are less potent inhibitors of NADH-oxidase also inhibited WST-1 reduction, but the impermeative SH-blocking reagentpara-chloromercuriphenylsulfonic acid and trypsin, both of which are known to inhibit NADH-ferricyanide reductase but not NADH oxidase, had little effect on WST-1 reduction. Human peripheral blood neutrophils activated by phorbol myristate acetate efficiently reduced WST-1. This reduction was inhibited by 95% by superoxide dismutase but was unaffected by resiniferatoxin indicating a distinct mechanism of reduction by neutrophil NADPH-oxidase. Metabolic inhibitors were used to investigate putative involvement of cytosolic NADH in WST-1 reduction. Mitochondrial inhibitors such as cyanide and thenoyltrifluoroacetone, and to a lesser extent azide and rotenone, stimulated WST-1 reduction by Jurkat cells whereas inhibitors of glucose uptake and glycolysis were inhibitory. These results are explained by respiratory inhibitors having a sparing effect on cytosolic NADH levels and by glycolytic inhibitors lowering NADH. We conclude that WST-1 is reduced extracellularly by plasma membrane NADH-oxidase by a mechanism involving superoxide production. WST-1 is also efficiently reduced by the plasma membrane NADPH-oxidase of activated neutrophils.Abbreviations WST-1 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt - MTT 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide - XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-carboxanilide-2H-tetrazolium, monosodium salt - MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-boxymemoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt - TTFA thenoyltrifluoroacetone - pCMBS p-chloromercuriphenylsul-fonic acid - SOD Superoxide dismutase - PMOR plasma membrane - NADH oxidoreductase - PMS phenazine methosulfate - PMA phorbol myristate acetate  相似文献   

12.
The effect of various conditions on the accumulation of porphyrins and heme by resting suspensions of anaerobically grown cells of Staphylococcus epidermidis was examined. Anaerobically grown cells contain 10 to 15% of the amount of protoheme found in cells grown aerobically. Resting suspensions of anaerobically grown cells, when incubated aerobically in buffer with delta-aminolevulinic acid and glucose for 60 min, exhibited a fourfold increase in protoheme content. At high levels of delta-aminolevulinic acid, there was also a significant accumulation of porphyrins with the solubility and chromatographic properties of coproporphyrin and uroporphyrin. Protoporphyrin was not accumulated. When oxygen was excluded from the incubation mixture, accumulation of protoheme was prevented, but accumulation of coproporphyrin and total porphyrin was enhanced. Nitrate served as an electon acceptor as indicated by its reduction to nitrite; however, nitrate did not substitute for oxygen in causing the accumulation of protoheme. These results suggested that oxygen is required for one of the late steps of heme synthesis in S. epidermidis, possibly for the conversion of coproporphyrinogen to protoporphyrin. The inability of nitrate to substitute for oxygen suggests a role for molecular oxygen as a substrate rather than as an electron acceptor for heme synthesis.  相似文献   

13.
The effect of iron substrates and growth conditions on in vitro dissimilatory iron reduction by membrane fractions of Shewanella oneidensis MR-1 was characterized. Membrane fractions were separated by sucrose density gradients from cultures grown with O(2), fumarate, and aqueous ferric citrate as the terminal electron acceptor. Marker enzyme assays and two-dimensional gel electrophoresis demonstrated the high degree of separation between the outer and cytosolic membrane. Protein expression pattern was similar between chelated iron- and fumarate-grown cultures, but dissimilar for oxygen-grown cultures. Formate-dependent ferric reductase activity was assayed with citrate-Fe(3+), ferrozine-Fe(3+), and insoluble goethite as electron acceptors. No activity was detected in aerobic cultures. For fumarate and chelated iron-grown cells, the specific activity for the reduction of soluble iron was highest in the cytosolic membrane. The reduction of ferrozine-Fe(3+) was greater than the reduction of citrate-Fe(3+). With goethite, the specific activity was highest in the total membrane fraction (containing both cytosolic and outer membrane), indicating participation of the outer membrane components in electron flow. Heme protein content and specific activity for iron reduction was highest with chelated iron-grown cultures with no heme proteins in aerobically grown membrane fractions. Western blots showed that CymA, a heme protein involved in iron reduction, expression was also higher in iron-grown cultures compared to fumarate- or aerobic-grown cultures. To study these processes, it is important to use cultures grown with chelated Fe(3+) as the electron acceptor and to assay ferric reductase activity using goethite as the substrate.  相似文献   

14.
Vibrio vulnificus, an opportunistic human pathogen, can obtain iron from a variety of heme proteins. This process involves the digestion of heme proteins by an exoprotease to liberate protoheme (iron-protoporphyrin IX). In the present study, we tested whether this pathogen also uses a synthetic heme compound, Fe-alpha,beta,gamma,delta-tetraphenylporphine tetrasulfonic acid (Fe-TPPS), as an iron source. When inoculated into a medium containing Fe-TPPS, V. vulnificus L-180 multiplication was seen to be dependent on the concentration of the synthetic heme compound; a mutant lacking the ability to utilize protoheme did not multiply. Cells of the strain grown under the iron-restricted condition showed time-dependent uptake of Fe-TPPS. The ability to use either protoheme or Fe-TPPS was significantly reduced by the addition of an excess amount of free TPPS or Cu-TPPS. The data suggest that, V. vulnificus may assimilate Fe-TPPS, at least partially, through the same system as that for protoheme.  相似文献   

15.
PurposeCancer cells rapidly adjust their balance between glycolytic and mitochondrial ATP production in response to changes in their microenvironment and to treatments like radiation and chemotherapy. Reliable, simple, high throughput assays that measure the levels of mitochondrial energy metabolism in cells are useful determinants of treatment effects. Mitochondrial metabolism is routinely determined by measuring the rate of oxygen consumption (OCR). We have previously shown that indirect inhibition of plasma membrane electron transport (PMET) by the mitochondrial uncoupler, FCCP, may also be a reliable measure of mitochondrial energy metabolism. Here, we aimed to validate these earlier findings by exploring the relationship between stimulation of oxygen consumption by FCCP and inhibition of PMET.MethodsWe measured PMET by reduction of the cell impermeable tetrazolium salt WST-1/PMS. We characterised the effect of different growth conditions on the extent of PMET inhibition by FCCP. Next, we compared FCCP-mediated PMET inhibition with FCCP-mediated stimulation of OCR using the Seahorse XF96e flux analyser, in a panel of cancer cell lines.ResultsWe found a strong inverse correlation between stimulation of OCR and PMET inhibition by FCCP. PMET and OCR were much more severely affected by FCCP in cells that rely on mitochondrial energy production than in cells with a more glycolytic phenotype.ConclusionIndirect inhibition of PMET by FCCP is a reliable, simple and inexpensive high throughput assay to determine the level of mitochondrial energy metabolism in cancer cells.  相似文献   

16.
We have investigated the resonance Raman spectra of monomeric insect cyanomethemoglobins (CTT III and CTT IV) reconstituted with (1) protohemes IX selectively deuterated at the 4-vinyl as well as the 2,4-divinyls, (2) monovinyl-truncated hemes such as pemptoheme (2-hydrogen, 4-vinyl) and isopemptoheme (2-vinyl, 4-hydrogen), (3) symmetric hemes such as protoheme III (with 2- and 3-vinyls) and protoheme XIII (with 1- and 4-vinyls), and (4) hemes without 2- and 4-vinyls such as mesoheme IX, deuteroheme IX, 2,4-dimethyldeuteroheme IX, and 2,4-dibromodeuteroheme IX. Evidence is presented that the highly localized vinyl C = C stretching vibrations at the 2- and 4-positions of the heme in these cyanomet CTT hemoglobins are noncoupled and inequivalent; i.e., the 1631- and 1624-cm-1 lines have been assigned to 2-vinyl and 4-vinyl, respectively. The elimination of the 2-vinyl (in pemptoheme) or the 4-vinyl (in isopemptoheme) does not affect the C = C stretching frequency of the remaining vinyl. Furthermore, two low-frequency vinyl bending modes at 412 and 591 cm-1 exhibit greatly different resonance Raman intensities between 2-vinyl and 4-vinyl. The observed intensity at 412 cm-1 is primarily derived from 4-vinyl, whereas the 591-cm-1 line results exclusively from the 2-vinyl. Again, there is no significant coupling between 2-vinyl and 4-vinyl for these two bending modes.  相似文献   

17.
Abstract Bacillus subtilis can synthesise cytochromes containing a -, b -, c - and d -type heme. The biosynthetic pathways of these heme prosthetic groups were investigated by using strains blocked in uroporphyrinogen III synthesis from porphobilinogen or in heme b (protoheme IX) synthesis from uroporphyrinogen III. The results strongly suggest that heme a and heme d are both synthesised from heme b (protoheme IX). They also indicate that B. subtilis contains a novel ferrochelatase involved in the synthesis of siroheme.  相似文献   

18.
Plasma membrane electron transport (tPMET) pathways have been identified in all living cells, and a wide variety of tools have been used to study these processes. In our laboratory we have used the cell-impermeable tetrazolium dye WST-1, together with the mitochondrial gene knockout (rho0) cell model, to investigate one of these pathways. We have shown that growth of HL60rho0 cells is dependent on oxygen, and that these cells consume oxygen at the cell surface. Similarities in inhibition profiles between non-mitochondrial oxygen consumption and WST-1 reduction suggest that both systems share a common tPMET pathway. In support of this, oxygen was shown to compete with the intermediate electron acceptor that mediates WST-1 reduction, for reducing electrons. The observation that tPMET activity is higher in rho0 cells compared to their mitochondrially-competent counterparts was shown to be the result of competition between the mitochondrial and plasma membrane electron transport systems for intracellular reducing equivalents. Elevated rates of dye reduction appear to be mediated through increased expression of the key components of tPMET, which include the cell surface NADH oxidase, CNOX. These findings have played a critical role in shaping our current understanding of the mechanisms of this particular pathway of tPMET.  相似文献   

19.
Chick embryo liver cells, when cultured for 41 h in the presence of [2-14C]mevalonic acid, took up label and incorporated radioactivity into heme a, but not into protoheme. Incubation of cells with delta-[4-14C]aminolevulinic acid (ALA) resulted in uptake of label and incorporation of radioactivity into both protoheme and heme a. These results show that both protoheme and heme a are synthesized during the incubation period, and that mevalonic acid is a specific precursor of the farnesyl moiety of heme a. Incubation of cells with [1,2-14C]acetate plus N-methyl mesoporphyrin IX, an inhibitor of heme synthesis, resulted in negligible incorporation of label into protoheme and heme a, although cellular lipids were highly labeled. This result indicates that the heme purification methods employed were capable of separating hemes from lipids, and that the measured incorporation of label into hemes from [14C]mevalonic acid and [14C]ALA was not due to lipid contamination.  相似文献   

20.
The cytochrome bo complex of Escherichia coli is encoded by the cyoABCDE operon and functions as a redox-coupled proton pump. In this study, we have constructed eight cyoE deletion mutants and found that all the mutants were nonfunctional. Spectroscopic and heme analyses of the mutant oxidases revealed that the mutations specifically substituted protoheme IX for heme O present in the high-spin heme binding site. We found also that the overexpression of the cyoE gene in a cyo operon deletion strain resulted in a conversion of protoheme IX to heme O. Since the CyoE protein contains the putative allylic polyprenyldiphosphate binding domain, we concluded that the cyoE gene encodes a novel enzyme, protoheme IX farnesyltransferase, essential for heme O biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号