共查询到20条相似文献,搜索用时 0 毫秒
1.
A bacterium capable of utilising p-toluenesulphonamide was isolated from activated sludge. The isolated strain designated PTSA was identified as a Pseudomonas sp. using chemotaxonomic and genetic studies. Pseudomonas PTSA grew on p-toluenesulphonamide in a chemostat with approximately 90% release of sulphate and 80% release of ammonium. The isolate was also able to grow on 4-carboxybenzenesulphonamide and 3,4-dihydroxybenzoate but did not grow on p-toluenesulphonate. The transient appearance of 4-hydroxymethylbenzenesulphonamide and 4-carboxybenzenesulphonamide during p-toluenesulphonamide degradation proves oxidation of the methyl group is the initial attack in the biodegradation pathway. Both metabolites of p-toluenesulphonamide degradation were identified by high-performance liquid chromatography-mass spectrometry. 4-Carboxybenzenesulphonamide is probably converted into 3,4-dihydroxybenzoate and amidosulphurous acid. The latter is a chemically unstable compound in aqueous solutions and immediately converted into sulphite and ammonium. Both sulphite and ammonium were formed during degradation of 4-carboxybenzenesulphonamide. 相似文献
2.
Valli Nachiyar C Suseela Rajakumar G 《Journal of industrial microbiology & biotechnology》2006,33(10):845-849
Pseudomonas aeruginosa, isolated from soil near tannery effluent was able to degrade 8-anilino-1-naphthalenesulfonic acid (ANSA), a sulfonated aromatic amine. The organism degraded this amine up to a concentration of 1,200 mg l−1 using glucose and ammonium nitrate as carbon and nitrogen sources respectively. The degradation started when the organism reached its late exponential growth phase. Salicylic acid and β-ketoadipic acid were identified as intermediate compounds using HPLC and GC–MS and provide evidence for ortho pathway reactions. Further proof for the pathway is obtained from the dioxygenase activity of the strain growing exponentially in medium with ANSA and glucose. 相似文献
3.
Three phenylacyl-CoA ligase activities were detected in extracts of Pseudomonas putida CA-3 cells grown with a variety of aromatic carboxylic acids. The three phenylacyl-CoA enzyme activities measured were phenylpropyl-CoA ligase (acting on both phenylpropanoic acid and cinnamic acid), a phenylacetyl-CoA ligase, and a medium chain length phenylalkanoyl-CoA ligase acting on aromatic substrates with 5 or more carbons in the acyl moiety. The rate of each enzyme activity detected in extracts of P. putida CA-3 cells is dependent on the growth substrate supplied. High rates of phenylpropyl-CoA ligase activity were observed with extracts of cells grown on phenylpropanoic acid, cinnamic acid or medium chain length phenylalkanoic acids with an uneven number of carbons in the acyl moiety. Extracts of P. putida CA-3 cells exhibited high rates of phenylacetyl-CoA ligase activity when grown on phenylacetic acid or medium chain length phenylalkanoic acids with an even number of carbons in the acyl moiety. In addition, high rates of medium chain length phenylalkanoyl-CoA ligase activity, towards phenylvaleric acid and phenylhexanoic acid, were exhibited by extracts of cells grown on all medium chain length phenylalkanoic acids. Low levels of the various phenylacyl-CoA ligase activities were found in extracts of cells grown on benzoic acid and glucose. Benzoyl-CoA ligase activity was not detected in any cell free extracts generated in this study. 相似文献
4.
Biodegradation of crystal violet by Pseudomonas putida 总被引:1,自引:0,他引:1
Crystal violet (CV), which has been extensively used as a biological stain and a commercial textile dye, is a recalcitrant
molecule. A strain of Pseudomonas putida was isolated that effectively degraded CV: up to 80% of 60 μM CV as the sole carbon source, was degraded in liquid media within 1 week. Nine degradation products were isolated and identified.
We propose that CV degradation occurs via a stepwise demethylation process to yield mono-, di-, tri-, tetra-, penta- and hexa-demethylated
CV species. 相似文献
5.
Biodegradation of aromatic compounds by microalgae 总被引:10,自引:0,他引:10
6.
Pseudomonas sp. strain ST-200 grew on indole as a sole carbon source. The minimal inhibitory concentration of indole was 0.3 mg/ml for
ST-200. However, ST-200 grew in a persolvent fermentation system containing a large amount of indole (a medium containing
20% by vol. diphenylmethane and 4 mg/ml indole), because most of the indole was partitioned in the organic solvent layer.
When the organism was grown in the medium containing indole at 1 mg/ml in the presence of diphenylmethane, more than 98% of
the indole was consumed after 48 h. Isatic acid (0.4 mg/ml) and isatin (0.03 mg/ml) were produced as the metabolites in the
aqueous medium layer.
Received: September 12, 1996 / Accepted: January 2, 1997 相似文献
7.
Biodegradation of chlorophenol mixtures by Pseudomonas putida 总被引:1,自引:0,他引:1
The dynamic growth behavior of Pseudomonas putida has been studied when resting calls were inoculated into a growth medium containing inhibitory concentrations of mixtures of phenol and monochlorophenols. Resting cells inoculated into single carbon substrate media did not demonstrate enhanced cell lysis by any of the phenol substrates. The apprarent death rate was reduced as the concentrations of phenol or chlorophenols were increased. This behavior was modeled by employing a constant specific death rate (k(d) = 0.0075 h(-1)) and assuming all organic species result in a lag-phase, specific growth rate which may be larger or smaller than k(d).Logarithmic biomass growth on pure monochlorophenols did not occur within 2 weeks after inoculation. Logarithmic growth phases were only observed when the monochlorophenols were cometabolized with phenol. The delay time over which the lag phase exists increased exponentially with phenol concentration and linearly with monochlorophenol concentration. The log growth yield coefficient decreased linearly with monochlorophenol concentration.The lag-phase, specific growth rate was found to decrease exponentially with the concentration of monochlorophenols. This resulted in a 50% lag growth rate inhibition for both 3- and 4-chlorophenol of 9 ppm and for 2-chlorophenol of only 2 ppm. The new, empirical correlations are shown to closely model the complete lag and log growth behavior ot P. putida on phenol and chlorophenol mixtures. (c) 1992 John Wiley & Sons, Inc. 相似文献
8.
W. Chobchuenchom S. Mongkolsuk A. Bhumiratana 《World journal of microbiology & biotechnology》1996,12(6):607-614
Pseudomonas putida 10.2, a 3-chlorobenzoate (3CBa)-degrading bacterium, was isolated from a soil sample obtained from an agricultural area in Chiang Mai, Thailand. This bacterium could degrade 2mm 3CBa very rapidly with the concomitant formation of chloride ion when grown in mineral salt-yeast extract medium. The presence of glucose, lactose and pyruvate in the medium reduced the capability of this bacterium to degrade 3CBa. Metabolites such as 3-chlorocatechol (3CC), catechol and cis,cis-muconic acid (muconate) could be detected in the growth medium or in cell suspensions when 3CBa was used as the substrate. Furthermore, when crude enzyme extract prepared from 3CBa-grown P. putida 10.2 was incubated with 3CC, catechol and muconate could be detected in the reaction mixtures. Thus, the biodegradation pathway of 3CBa by P. putida 10.2 was proposed to involve transformation of 3CBa to 3CC. The dehalogenation step is believed to involve removal of chloride from 3CC to form catechol, which is subsequently converted to muconate. 相似文献
9.
A bacterium capable of degrading propoxur (2-isopropoxyphenyl-N-methylcarbamate) was isolated from soil by enrichment cultures and was identified as a Pseudomonas species. The organism grew on propoxur at 2 g/l as sole source of carbon and nitrogen, and accumulated 2-isopropoxyphenol as metabolite in the culture medium. The cell free extract of Pseudomonas sp. grown on propoxur contained the activity of propoxur hydrolase. The results suggest that the organism degraded propoxur by hydrolysis to yield 2-isopropoxyphenol and methylamine, which was further utilized as carbon source. 相似文献
10.
The majority of the world’s crude oil reserves consist of highly biodegraded heavy and super heavy crude oils and oil sands that have not yet been fully exploited. These vast resources contain complex mixtures of carboxylic acids known as naphthenic acids (NAs). NAs cause major environmental and economic problems, as they are recalcitrant, corrosive and toxic. Although aromatic acids make up a small proportion of most NA mixtures, they have demonstrable toxicities to some organisms (e.g. some bacteria and algae) and ideally need to be removed or reduced by remediation. The present study analysed the ability of Pseudomonas putida KT2440 to degrade highly recalcitrant aromatic acids, as exemplified by the alkyl phenylalkanoic acid (4′-t-butylphenyl)-4-butanoic acid (t-BPBA) and the more degradable (4′-n-butylphenyl)-4-butanoic acid (n-BPBA). n-BPBA was completely metabolized after 14 days, with the production of a persistent metabolite identified as (4′-n-butylphenyl)ethanoic acid (BPEA) which resulted from removal of two carbon atoms from the carboxyl side chain (beta-oxidation) as observed previously with a mixed consortium. However, when n-BPBA concentration was increased two-fold, degradation decreased by 56% with a concomitant six-fold decrease in cell numbers, suggesting that at greater concentrations, n-BPBA may be toxic to P. putida KT2440. In contrast, P. putida KT2440 was unable to degrade the highly recalcitrant t-BPBA even after 49 days. These findings have implications for NA bioremediation in the environment. 相似文献
11.
Naphthenic acids are a complex mixture of organic compounds which naturally occur in crude oil. Low molecular weight components
of the naphthenic acids are known to be toxic in aquatic environments and there is a need to better understand the factors
controlling the kinetics of their biodegradation. In this study, a relatively low molecular weight naphthenic acid compound
(trans-isomer of 4-methyl-1-cyclohexane carboxylic acid) and a microbial culture developed in our laboratory were used to
study the biodegradation of this naphthenic acid and to evaluate the kinetics of the process in batch cultures. The initial
concentration of trans-4-methyl-1-cyclohexane carboxylic acid (50–750 mg l−1) did not affect the maximum specific growth rate of the bacteria at 23°C (0.52 day−1) to the maximum biodegradable concentration (750 mg l−1). The maximum yield observed at this temperature and at a neutral pH was 0.21 mg of biomass per milligram of substrate. Batch
experiments indicated that biodegradation can be achieved at low temperatures; however, the biodegradation rate at room temperature
(23°C) and neutral pH was 5 times faster than that observed at 4°C. Biodegradation at various pH conditions indicated a maximum
specific growth rate of 1.69 day−1 and yield (0.41 mg mg−1) at a pH of 10. 相似文献
12.
Pseudomonas aeruginosa is capable of moving by swimming, swarming, and twitching motilities. In this study, we investigated the effects of fatty acids on Pseudomonas aeruginosa PAO1 motilities. A branched-chain fatty acid (BCFA)--12-methyltetradecanoic acid (anteiso-C15:0)--has slightly repressed flagella-driven swimming motility and completely inhibited a more complex type of surface motility, i.e. swarming, at a concentration of 10 microg mL(-1). In contrast, anteiso-C15:0 exhibited no effect on pili-mediated twitching motility. Other BCFAs and unsaturated fatty acids tested in this study showed similar inhibitory effects on swarming motility, although the level of inhibition differed between these fatty acids. These fatty acids caused no significant growth inhibition in liquid cultures. Straight-chain saturated fatty acids such as palmitic acid were less effective in swarming inhibition. The wetness of the PAO1 colony was significantly reduced by the addition of anteiso-C15:0; however, the production of rhamnolipids as a surface-active agent was not affected by the fatty acid. In addition to motility repression, anteiso-C15:0 caused 31% repression of biofilm formation by PAO1, suggesting that BCFA could affect the multiple cellular activities of Pseudomonas aeruginosa. 相似文献
13.
Abstract A natural isolate, designated BSA56, which was originally selected for growth with benzene sulfuric acid as sole carbon and energy source, was identified as a strain of Pseudomonas maltophila . Strain BSA56 grew on a wide range of aromatic sulfonic acids and was shown to release sulfite from benzene sulfonic acid and 2-napthalene sulforic acid. Although it also grew on toluene sulfonic acid and pyridine sulfonic acid, no significant sulfite release was observed with these substrates. Release of sulfite from benzene sulfonic acid was greatly promoted by the presence of glycerol. The ability to release sulfite was induced by growth in the presence of benzene sulfonic acid and was repressed almost entirely by substrates allowing rapid growth such as acetate. Strain BSA56 grew better at 30°C than 37°C on most aromatic substrates, but the reverse was true for most aromatic sulfonates. Several mutants of BSA56 were isolated with defects in benzoate, salicylate, or gentisate metabolism. However, all these mutants retained the ability to degrade the aromatic sulfonates. 相似文献
14.
A fast-growing Pseudomonas fluorescens CAS102, isolated by enrichment technique from polluted soil, effectively utilized morpholine as the energy source. The strain was able to grow in high concentrations of morpholine but accumulation of ammonia inhibited its growth and complete mineralization. The molar conversion ratio of morpholine to ammonia was 1:0.82. The organism harboured a single, multiple antibiotic- and heavy metal-resistance 140kb plasmid which was resistant to curing. Transformation studies showed that the morpholine degradative phenotype was expressed only in Pseudomonas putida and not in Escherichia coli. Growth studies on different degradative intermediates of morpholine suggested that plasmid-encoded genes were involved in the heterocyclic ring cleavage and the remaining reactions were mediated by chromosomal genes. 相似文献
15.
铜绿假单胞菌生物降解特性的研究进展 总被引:2,自引:0,他引:2
近年来在环境污染物的生物降解研究方面有了很大进展。铜绿假单胞菌(Pseudomon asaeruginosa,PA)作为重要的降解菌株之一,具有较强的降解能力,可降解物质种类广泛,在环境污染物的生物降解中具有重要作用并占据重要地位。本文综述了PA的降解特性、代谢途径、遗传基础与酶系及促降解物质在生物降解方面的研究进展。 相似文献
16.
Degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9 总被引:1,自引:0,他引:1
Abstract The aerobic degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9 was studied. Intact cells of Pseudomonas sp. BN9 grown with 2,4-dihydroxybenzoate oxidized 2,4-dihydroxybenzoate but not salicylate. Cell-free extracts of Pseudomonas sp. BN9 converted 2,4-dihydroxybenzoate after the addition of NAD(P)H. A partially purified protein fraction converted 2,4-dihydroxybenzoate with NADH to 1,2,4-trihydroxybenzene. 1,2,4-Trihydroxybenzene was converted by a 1,2-dioxygenase to maleylpyruvate, which was reduced by a NADH-dependent enzyme to 3-oxoadipate. 2,4-Dihydroxybenzoate 1-monooxygenase, 1,2,4-trihydroxybenzene 1,2-dioxygenase and maleylpyruvate reductase were induced in Pseudomonas sp. BN9 after growth with 2,4-dihydroxybenzoate. 相似文献
17.
The synthesis and biodegradation of polyurethane foams obtained from environmentally benign processes were studied.Flexible polyurethane foams based on castor oil modified with maleic anhydride (MACO) were synthesized. The synthesis involved a single-stage process by mixing castor oil/MACO (weight ratios 75:25 and 25:75) and 2-4 toluene diisocyanate (TDI) in stoichiometric amount of OH:NCO. The biodegradability studies with cultures of a Pseudomonas sp. strain (DBFIQ-P36) involved incubation periods of 2 months at 37 °C. Polymers were characterized before and after biodegradation by Fourier Transform Infrared Spectroscopy (FT-IR), INSTRON mechanical tester, and Scanning Electron Microscopy (SEM). The results showed that the addition of MACO produces a considerable increase in the rate of degradation and an important change in the chemical and morphological structures. This is due to the presence of ester groups that are vulnerable to chemical hydrolysis and enzymatic attack. The eco-toxicity after the biodegradation was evaluated. Toxic compounds such as primary amines were identified by Gas Chromatography–Mass Spectrometry (GC–MS) in combination with Nuclear Magnetic Resonance (NMR) as degradation products. 相似文献
18.
A new bacterial alcohol dehydrogenase active on degraded lignin and several low molecular weight aromatic compounds 总被引:1,自引:0,他引:1
Jean Pelmont Catherine Tournesac Ahmed Mliki Michel Barrelle Claude Beguin 《FEMS microbiology letters》1989,57(1):109-114
A new intracellular bacterial dehydrogenase has been purified. It was active in the reversible reduction by NADH of conjugated carbonyl groups in partially degraded lignin. It was also active on various aromatic aldehydes such as vanillin, syringaldehyde and cinnamaldehyde, but had no effect on acetovanillone and lignin models carrying a conjugated ketone. It is proposed that this enzyme functions as a broadly specific lignin dehydrogenase at the level of aldehydic groups that are present in the lignin preparations. 相似文献
19.
【目的】探究2株假单胞菌(Pseudomonas)对吡啶和喹啉的降解。【方法】基于16S rRNA序列同源性和基因间区分析,对分离菌株进行分类鉴定。通过分光光度法和电喷雾电离质谱法(Electrospray Ionisation/Mass Spectrometry,ESI/MS)确定分离菌株对吡啶和喹啉的降解性能。通过质粒消除验证降解质粒的存在,同时克隆了可能的降解基因。【结果】鉴定结果表明,两株分离细菌隶属于Pseudomonas,并将其命名为XJUHX-1和XJUHX-12。降解数据表明,2株菌株分别耐受吡啶和喹啉,同时分别检测到4种和2种吡啶和喹啉的可能降解产物。结果还表明,消除质粒后的菌株对吡啶和喹啉的降解能力降低。扩增的编码NADH还原酶部分的降解喹啉oxoR基因和编码硝酸还原酶的降解吡啶的nifH基因,同时在E.coli中表达了43kDa和16kDa的蛋白。【结论】2株Pseudomonas具有降解吡啶和喹啉的能力。 相似文献
20.
Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid–liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. 相似文献