首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Efficient in vitro regeneration systems for Vaccinium species   总被引:1,自引:0,他引:1  
Efficient protocols for shoot regeneration from leaf explants suitable for micropropagation as well as for the development of transgenic plants were developed for blueberry (Vaccinium corymbosum) and lingonberry (Vaccinium vitis-idaea) cultivars. Nodal segments were used to initiate in vitro shoot cultures of lingonberry cultivar ‘Red Pearl’ and southern highbush blueberry cultivar ‘Ozarkblue’. In order to develop an optimized regeneration procedure, different types and concentrations of plant growth regulators were tested to induce adventitious shoot regeneration on excised leaves from micropropagated shoots of both cultivars. The effect on percentage regeneration and number of shoots per explant was investigated. Results indicated that zeatin was superior to TDZ and meta-topolin in promoting adventitious shoot formation. A concentration of 20 μM zeatin was most effective in promoting shoot regeneration in both cultivars, in case of ‘Red Pearl’ along with 1 μM NAA. Shoots were either allowed to root in vitro on medium containing IBA or NAA or ex vitro in a fog tunnel. IBA was superior to NAA for induction of root development in vitro in both Vaccinium cultivars. Ex vitro rooting under high humidity was tested with cuttings from mature field-grown plants, from acclimatized tissue culture derived plants and with unrooted in vitro proliferated shoots planted directly. It was found that in vitro shoots rooted better under fog than cuttings from the other plant sources and rooting was equivalent to that achieved in vitro.  相似文献   

2.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

3.
Summary An efficient and simple plant regeneration system via organogenesis from leaf segments of persimmon (Diospyros kaki Thunb.) cultivars ‘Fuyu’ and ‘Nishimurawase’ has been developed. The regeneration capacity was influenced by the culture vessels, gelling agents, plant growth regulators, and light conditions. Leaf explants taken from in vitro shoots were cultured on a modified Murashige and Skoog medium (MS1/2N), for 16 wk without transfer to fresh medium. Adventious shoots appeared after 4 and 8 wk in culture of ‘Nishimurawase’ and ‘Fuyu’ tissues, respectively. The culture of leaf explants in Erlenmeyer flasks with medium containing 4 g l−1 agar enhanced shoot formation in comparison to media with increased agar concentrations. Optimal shoot regeneration was obtained with 5 mg l−1 (22.8 μM) zeatin and 0.1 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for ‘Nishimurawase’, and 10 mg l−1 (45.6 μM) zeatin and 0.1 mg l−1 (0.05 μM) IBA for ‘Fuyn’. Shoot regeneration frequencies in both cultivars were 100%, and shoot numbers per explant reached up to 9.2 for ‘Nishimurawase’ and 2.2 for ‘Fuyu’. Dark incubation during the first 4–5 wk was the most effective condition to successfully influence shoot regeneration in both cultivars. While dark incubation was essential for adventitious shoot formation by ‘Fuyu’, it was only slightly beneficial to ‘Nishimurawase’. More than 80% of the regenerated shoots rooted within 4 wk on hormone-free MS1/2N demium after having been dipped for 30 s in 250 mg l−1 (1.1. mM) IBA solution.  相似文献   

4.
Leaf, petal, petiole, and intermodal stems of six chrysanthemum cultivars were incubated on a medium supplemented with 0.00–6.66 μM benzyladenine (BA) either alone or in combination with 2.85–8.56 μM indoleacetic acid (IAA), and 0.46 μM kinetin (Kin). Significant differences in frequency of regeneration were observed among different cultivars when grown on media containing different plant growth regulators (PGRs). The highest frequency of regeneration was observed for cv. Brighton followed by cvs. Dark Roanoke and Tahoe. Low frequencies of shoot organogenesis were observed for cvs. Dark Orange Cupertino, Hudson Bay, and Ivory Eugene. Among different explants, petals exhibited the highest frequencies of shoot organoenesis and mean number of shoots per explant. Regenerated shoots of cv. Brighton transferred onto a medium containing 2.85–8.56 μM IAA developed highest frequency of roots (100%) with a mean of 7.6 roots per shoot. Well-rooted shoots transferred to plastic pots containing a soil mix were kept in a growth room for 1 week, and then moved to the greenhouse for further growth and development.  相似文献   

5.
An efficient system to regenerate shoots on excised leaves of greenhouse-grown wild lowbush blueberry (Vaccinium angustifolium Ait.) was developed in vitro. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, medial, and basal segments of the leaves was tested. Leaf cultures produced multiple buds and shoots with or without an intermediary callus phase on 2.3–4.5 μM TDZ within 6 wk of culture initiation. The greatest shoot regeneration came from young expanding basal leaf segments positioned with the adaxial side touching the culture medium and maintained for 2 wk in darkness. Callus development and shoot regeneration depended not only on the polarity of the explants but also on the genotype of the clone that supplied the explant material. TDZ-initiated cultures were transferred to medium containing 2.3–4.6 μM zeatin and produced usable shoots after one additional subculture. Elongated shoots were dipped in 39.4 mM indole-3-butyric acid powder and planted on a peat:perlite soilless medium at a ratio of 3:2 (v/v), which yielded an 80–90% rooting efficiency. The plantlets were acclimatized and eventually established in the greenhouse with 75–85% survival.  相似文献   

6.
Shoot organogenesis from mature leaf tissues of two scented Pelargonium capitatum cultivars, ‘Attar of Roses’ and ‘Atomic Snowflake’, grown in the greenhouse, were optimized in the presence of thidiazuron (TDZ). The protocol involved preculture of leaf sections on basal Murashige and Skoog (MS) medium supplemented with 10 μM TDZ, 4.4 μM of 6-benzyladenine (BA) and 5.4 μM α-naphtaleneacetic acid (NAA) for a period of 2 weeks and followed by subculture of explants to a fresh medium containing 4.4 μM BA and 5.4 μM NAA. Frequency of regeneration reached approximately 93% for both cultivars, with the induction of more than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS medium supplemented with 4.4 mM sucrose and 8.6 μM of Indole-3-acetic acid (IAA). All regenerated shoots from both cultivars developed roots when transferred to organic soil mix, acclimatized, and successfully transferred to greenhouse conditions. When regenerated shoots were transferred to hydroponic conditions, frequency of survival was 76.2 and 61.9% for ‘Attar of Roses’ and ‘Atomic Snowflake’, respectively.  相似文献   

7.
Hypocotyl expiants from 22 cultivars ofCatharanthus roseus were cultured on various shoot-inducing media to assess their competence for adventitious shoot formation. The Murashige and Skoog (MS) media had been supplemented with 14 μM zeatin and 2.5 μM indole-3-butyric acid (IBA), 4.5 μM BA and 0.5 μM α-naphthaleneacetic acid (NAA), or 14 μM thidiazuron and 2.5 μM IBA. After eight weeks, the expiants from ‘Cooler Raspberry Red’ showed the greatest frequency of adventitious shoot formation, followed by ‘Cooler Orchid’ and ‘Cooler Treated’. The highest frequency (86.7%) for ‘Cooler Raspberry Red’ was attained on the medium enhanced with 14 μM zeatin and 2.5 μM NAA. Excised adventitious shoots were then readily rooted on a half-strength MS basal medium. Afterward, the regenerated plantlets were transferred to potting soil and grown to maturity in a greenhouse.  相似文献   

8.
Shoots were regenerated from in vitro leaf tissues of two genotypes of Viburnum dentatum, a popular shrub species for landscape use. Adventitious shoots were induced when leaf tissues were cultured on woody plant medium (WPM) supplemented with either benzyladenine (BA) or thidiazuron (TDZ). Effects of cytokinin concentration, indole-3-butyric acid (IBA), and dark treatment on shoot regeneration were investigated. Dark treatment for the first 4 weeks of leaf explants cultured in the regeneration medium significantly increased the frequency of regeneration. The highest frequency of shoot regeneration (70%) for ‘Synnesvedt’ was obtained when leaf tissues were cultured in the medium with 40 μM BA or 8 μM TDZ with 4 weeks dark treatment. The highest frequency of shoot regeneration (90%) for ‘MN34’ was found in the 4 μM TDZ medium with 4 weeks dark treatment. Addition of IBA significantly enhanced shoot regeneration. Ethyl methanesulfonate (EMS) treatment inhibited callus proliferation, particularly in the early stage of callus recovery; however, no significant difference in shoot regeneration among different treatments was observed, indicating that the inhibitory effect of EMS was minimal after calluses re-acquired their capacity to grow and regenerate in the regular medium. Regenerated shoots (>1.5 cm) were rooted in the half-strength MS medium containing 5-10 μM IBA or naphthalene acetic acid (NAA). Rooted plants were transferred to the potting medium and grown in the greenhouse.  相似文献   

9.
The influence of the nutrient composition of plant tissue culture media on axillary shoot proliferation and their preconditioning effect on subsequent adventitious shoot regeneration from pear leaves was investigated. The goal was to improve both micropropagation and regeneration of ‘Bartlett’ and ‘Beurre Bosc’ pear cultivars. Driver–Kuniyuki walnut (DKW) and Quoirin and Lepoivre (QL) nutrient media were found to be superior to Murashige and Skoog (MS) and Woody Plant Medium (WPM) for axillary shoot proliferation. Shoots on WPM exhibited some chlorosis. Axillary shoot culture on DKW would be preferred to that on QL due to the production of excessively short thin shoots on the latter medium. DKW also was superior to QL and MS for production of young expanding leaves for use as explants in adventitious regeneration. Leaf explants derived from shoot proliferation cultures grown on DKW or QL media produced more adventitious shoots than leaf explants from MS.  相似文献   

10.
Summary Regeneration of adventitious shoots of pothos (Epipremnum aureum Linden and Andre) ‘Jade’ was obtained using leaf and petiole explants preprated from shoot tips of 3-yr-old greenhouse-grown plants. Explants were cultured on Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ), 6-(4-hydroxy-3-methy-trans-2-butenyl-amino)purine (zeatin) or N-isopentenylaminopurine (2iP) individually with α-naphthaleneacetic acid (NAA) in 18 combinations. Callus was initiated from cut surface and along the midrib or major vein of leaf sections. Shoot regeneration from leaf and petoole explants occurred in 30d on medium containing 1, 5 or 10μM TDZ with 0.5 or 1.0μM NAA except petioles on medium with 10 μM TDZ and 1.0 μM NAA where regeneration failed. More time (50d) was needed for shoot regeneration when explants were cultured on medium containing either 2iP or zeatin with NAA. Regeneration frequencies were up to 20% and 50% for leaf and petiole explants, respectively. Shoot numbers per responding explant attained 30 for leaf and petiole explants on medium containing TDZ but only one to four on medium containing either 2iP or zeatin. These results indicate that TDZ is a more effective cytokinin for in vitro regeneration of pothos than either zeatin or 2iP.. Shoots elongated readily and rooted well on MS basal medium, without plant growth regulators. Plantlets acclimatized rapidly and grew vigorously in the greenhouse after transfer to pots containing a commerecial potting medium.  相似文献   

11.
A complete protocol for adventitious shoot regeneration was developed from the leaves of peach rootstock ‘Nemaguard’(Prunus persica × P. davidiana) grown in vitro. Shoot explants were cultured in vitro in Murashige and Skoog medium supplemented with 3.55 μM 6-benzyladenine and 7.38 μM indole-3-butyric acid (IBA). Non-expanded leaves along with their petioles from 3-week-old in vitro-grown shoots were used as explants. Regeneration percentage was influenced by plant growth regulators, basal medium, explant type, dark period, and gelling agents. Optimal regeneration was observed with leaf explants wounded by transverse cuts twice along the midrib and first incubated with abaxial surfaces facing upward in the dark for 3 weeks, and then transferred to the light and cultured with the adaxial side in contact with regeneration medium, as seen on 1/2 MS, woody plant medium or Schenk and Hildebrandt medium supplemented with 9.08 μM thidiazuron, 0.54 μM IBA and 0.25% agar. This produced the highest regeneration percentage at 71.7% and a mean of 5.74 ± 3.24 shoots on 1/2 MS medium. Adventitious shoots were rooted (98.3–100%) and rooted plantlets survived after acclimatization to the greenhouse.  相似文献   

12.
The growth of black walnut shoot cultures was compared on media differing in nutrient formulation (MS, DKW, WPM, and 1/2X DKW), cytokinin type (ZEA, BA, and TDZ), and cytokinin concentration. On WPM and 1/2X DKW media, hyperhydricity was observed at frequencies of 60–100% compared with frequencies of 10–40% on the high-salt media (DKW and MS). All three cytokinins facilitated shoot regeneration from nodal cuttings, but recurrent elongation was only observed for BA (5–12.5 μM) and ZEA (5–25 μM) with mean shoot heights of 70–80 mm being possible after two culture periods (6–8 wk) for the fastest elongating lines. ZEA was effective across all six shoot lines with mean shoot heights of at least 35 mm over two culture periods, but two of the shoot lines were ‘nonresponsive’ to BA with mean shoot heights of <15 mm. In contrast, when shoot tip explants were used for culture multiplication, ZEA was the least effective cytokinin with proliferation frequencies of only 30–40%. The proliferation frequencies were twice as great (75–87%) for TDZ (0.05–0.1 μM), but most of the shoots regenerated were swollen or fasciated in morphology. High rates of proliferation (61–88%) were also possible using BA (12.5–25 μM), but axillary shoots did not elongate well, growing to heights of only 5–10 mm, on average, after 4–5 wk. Since the cytokinin types and concentrations required for high-frequency (>50%) axillary proliferation had adverse effects on the morphology and growth potential of the shoots, multiplication strategies based on the use of nodal cuttings are recommended.  相似文献   

13.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

14.
The capacity for indirect shoot organogenesis of leaf and root explants of four Dieffenbachia cultivars were examined on a modified Murashige and Skoog (MS; Physiol Plant 15:473–495, 1962) medium supplemented with different plant growth regulators in 112 combinations. Callus formation was only observed from leaf explants on MS supplemented with 1–10 μM thidiazuron (TDZ) and 0.5–1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) regardless of cultivars. The combination of 5 μM TDZ and 1 μM 2,4-D resulted in the greatest callus formation frequency among the four cultivars tested. Significant differences in callus and shoot formation from leaf explants were also observed among cultivars. Cultivars Camouflage, Camille, Octopus, and Star Bright produced green nodular, brown nodular, yellow friable, and green compact calli with corresponding maximum callus formation frequencies of 96%, 62%, 54%, and 52%, respectively. A maximum of 6.7 shoots/callus was observed in cv. Camouflage, followed by cvs. Camille and Star Bright at 3.7 and 3.5, respectively. Calli of cv. Octopus displayed no capacity for shoot organogenesis. Regardless of cultivar, callus formation was not observed on root explants. Regenerated shoots were successfully acclimatized in a shaded greenhouse condition with 100% survival.  相似文献   

15.
Summary An improved protocol for shoot regeneration from hypocotyl segments of seedlings from open-pollinated seeds of lingonberry (Vaccinium vitis-idaea L.) cultivars, ‘Ida’, ‘Splendor’, and ‘Erntesegen’, and a native clone from Newfoundland was developed. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, central, and basal segments of the hypocotyl was tested. Highly regenerative callus was obtained from hypocotyl segments on modified Murashige and Skoog (MMS) medium containing 5–10 μM TDZ. A maximum of 10 buds and 12 shoots per apical segment for seedlings of cultivar ‘Ida’ regenerated on MMS containing 10 μM TDZ. Callus and bud regeneration frequency, callus growth, and number of buds and shoots per regenerating explant depended not only on the specific segment of the hypocotyl, but also on parental genotype. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to a shoot proliferation medium containing 1–2 μM zeatin. The optimal concentration of sucrose for shoot elongation was 20 gl−1. Shoots were rooted ex vitro on a 2 peat: 1 perlite (v/v) medium after dipping in 0.8% indole-3-butyric acid, and rooted plants acclimatized readily under greenhouse conditions.  相似文献   

16.
The regenerative ability of small strips of stem of the Dutch elm hybrid ‘Commelin’ was tested as well as its sensitivity to neomycins. Cambium explants (1 mm thick), were excised from woody stems collected in the field. Up to 20 buds/explant were induced within 2–3 weeks giving 2–5 rootable shoots/explant after 5–6 weeks. Shoot excision every week from week three improved the yield up to 7 shoots per explant. Fourteen and 2.9 μM GA3 promoted shoot growth. Cytokinins (1 μM zeatin or 5 μM BA or 0.05 μM TDZ) completely inhibited shoot production and promoted callus formation. Kanamycin and paromomycin at between 240 and 360 μM inhibited shoot formation as did geneticin at 80 μM. The shoot-forming ability of the explants was high from leaf fall in the autumn to the spring flush, but could be maintained up to September by using cold storage (5–7 °C). Ninety-six percent of the shoots rooted with 0.5 μM IBA and were successfully acclimatized despite having a large basal callus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Camelina sativa was successfully established in vitro and systems for the regeneration of shoots from leaf explants developed. Methods for the surface-sterilisation of seeds were used which gave 95% germination, though the in vitro grown seedlings failed to develop beyond 28 days culture. In a micropropagation system, the rooting response of nodal explants was increased from a control level of 26.4% to 46.7% by the addition of 5.4 μM NAA. Leaf explants were more efficient for the regeneration of root and shoots than hypocotyls. For regeneration from leaf tissue the use of auxin (NAA) alone in the medium above a level of 0.54 μM resulted in root or callus growth. Cytokinin, in the form of BA alone failed to induce regeneration, but a combination of 4.44 μM BA and 0.54 μM NAA induced shoot regeneration at rates over 10.0 shoots per explant. Regenerated shoots were successfully transplanted to soil and flowered and set seed normally. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   

19.
Sweetpotato (Ipomoea batatas L.) is an important crop in North Carolina with annual production of 0.33 million tons, accounting for 37% of total US supply (USDA, Louisiana Farm Reporter 8(12), August 2008). To target industrial use, novel high-starch industrial-type varieties that contain more than 30% dry matter were developed by conventional breeding methods. In vitro cultures from selected genotypes were established using meristem culture. To establish regeneration procedures that could be coupled with transformation experiments, conditions for the induction of rapid shoot-organogenesis in leaf explants were compared using varying concentrations of the auxins ‘NAA’, ‘IAA’, ‘2,4-D’, and ‘4-FA’ either alone or in combination with zeatin riboside. Regeneration efficiencies, defined as the number of explants developing shoots out of the total number tested, were as high as 57% for the best genotypes, with a significant genotype-dependent response observed in all the hormone regimes evaluated. In all treatments, shoot regeneration was observed within 2 months. Our results led to the establishment of optimized in vitro regeneration procedures for the novel high-starch sweetpotato (SP) genotypes ‘DM01-158’, ‘FTA94’, ‘FT489’, and ‘PDM P4’ that are rapid and reliable.  相似文献   

20.
The aim of the study was to obtain an efficient system for Carlina acaulis subsp. simplex propagation. The experimental materials were shoot tips, fragments of hipocotyls, cotyledons and roots isolated from 10-day-old seedlings. The explants were transferred to the proliferation medium supplemented with different types of cytokinin: BA (13.3 μM), kinetin (13.9 μM) and zeatin (13.7 μM) in combination with NAA (0.54 μM). The best morphogenetic response was observed when explants were cultured on the BA supplemented medium. The maximum shoot organogenesis frequency was observed for shoot tip (nearly 94%). On average 8.6 axillary shoots were induced per explant. Multiplication rate increased during the first three subcultures. The shoots revealed a wide range of morphogenetic responses. Differences were observed in the presence or absence of hair on the surface of lamina. These changes had epigenetic character and were the effect of changes in DNA methylation, which is shown by differences in methylation pattern between 18S rRNA and 25S rRNA genes in the analyzed regenerated plants. Nearly 94% of plantlets were rooted on auxin lacking medium. Addition of auxin (NAA or IAA) increased both the rooting percentage (100%) and the number of roots per shoot, but their growth was inhibited. Shortening of the auxin exposition time reduced the number of roots. Moreover, high efficiency (90%) was observed for ex vitro rooting. Plantlets with a large number of roots survived better than the ones with only a few roots. Plants were able to flower and gave viable seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号